导航:首页 > 电器电路 > 噪声门电路

噪声门电路

发布时间:2024-04-23 11:14:26

① 门电路工作原理

第五节 CMOS逻辑门电路
http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把

CMOS逻辑门电路是在TTL电路问世之后 ,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地位的逻辑器件 。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件 ,以及PLD器件都采用CMOS艺制造,且费用较低。
早期生产的CMOS门电路为4000系列 ,随后发展为4000B系列。当前与TTL兼容的CMO器件如74HCT系列等可与TTL器件交换使用。下面首先讨论CMOS反相器,然后介绍其他CMO逻辑门电路。

MOS管结构图

MOS管主要参数:

1.开启电压VT
·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;
·标准的N沟道MOS管,VT约为3~6V;
·通过工艺上的改进,可以使MOS管的VT值降到2~3V。

2. 直流输入电阻RGS
·即在栅源极之间加的电压与栅极电流之比
·这一特性有时以流过栅极的栅流表示
·MOS管的RGS可以很容易地超过1010Ω。

3. 漏源击穿电压BVDS
·在VGS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS
·ID剧增的原因有下列两个方面:
(1)漏极附近耗尽层的雪崩击穿
(2)漏源极间的穿通击穿
·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后
,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID

4. 栅源击穿电压BVGS
·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。

5. 低频跨导gm
·在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导
·gm反映了栅源电压对漏极电流的控制能力
·是表征MOS管放大能力的一个重要参数
·一般在十分之几至几mA/V的范围内

6. 导通电阻RON
·导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数
·在饱和区,ID几乎不随VDS改变,RON的数值很大 ,一般在几十千欧到几百千欧之间
·由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似
·对一般的MOS管而言,RON的数值在几百欧以内

7. 极间电容
·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS
·CGS和CGD约为1~3pF
·CDS约在0.1~1pF之间

8. 低频噪声系数NF
·噪声是由管子内部载流子运动的不规则性所引起的
·由于它的存在,就使一个放大器即便在没有信号输人时,在输 出端也出现不规则的电压或电流变化
·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)
·这个数值越小,代表管子所产生的噪声越小
·低频噪声系数是在低频范围内测出的噪声系数
·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

一、CMOS反相器

由本书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。
下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即
VDD>(VTN+|VTP|) 。

1.工作原理

首先考虑两种极限情况:当vI处于逻辑0时 ,相应的电压近似为0V;而当vI处于逻辑1时,相应的电压近似为VDD。假设在两种情况下N沟道管 TN为工作管P沟道管TP为负载管。但是,由于电路是互补对称的,这种假设可以是任意的,相反的情况亦将导致相同的结果。
下图分析了当vI=VDD时的工作情况。在TN的输出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,叠加一条负载线,它是负载管TP在 vSGP=0V时的输出特性iD-vSD。由于vSGP<VT(VTN=|VTP|=VT),负载曲线几乎是一条与横轴重合的水平线。两条曲线的交点即工作点。显然,这时的输出电压vOL≈0V(典型值<10mV ,而通过两管的电流接近于零。这就是说,电路的功耗很小(微瓦量级)

下图分析了另一种极限情况,此时对应于vI=0V。此时工作管TN在vGSN=0的情况下运用,其输出特性iD-vDS几乎与横轴重合 ,负载曲线是负载管TP在vsGP=VDD时的输出特性iD-vDS。由图可知,工作点决定了VO=VOH≈VDD;通过两器件的电流接近零值 。可见上述两种极限情况下的功耗都很低。

由此可知,基本CMOS反相器近似于一理想的逻辑单元,其输出电压接近于零或+VDD,而功耗几乎为零。

2.传输特性

下图为CMOS反相器的传输特性图。图中VDD=10V,VTN=|VTP|=VT=
2V。由于 VDD>(VTN+|VTP|),因此,当VDD-|VTP|>vI>VTN 时,TN和TP两管同时导通。考虑到电路是互补对称的,一器件可将另一器件视为它的漏极负载。还应注意到,器件在放大区(饱和区)呈现恒流特性,两器件之一可当作高阻值的负载。因此,在过渡区域,传输特性变化比较急剧。两管在VI=VDD/2处转换状态。

3.工作速度

CMOS反相器在电容负载情况下,它的开通时间与关闭时间是相等的,这是因为电路具有互补对称的性质。下图表示当vI=0V时 ,TN截止,TP导通,由VDD通过TP向负载电容CL充电的情况。由于CMOS反相器中,两管的gm值均设计得较大,其导通电阻较小,充电回路的时间常数较小。类似地,亦可分析电容CL的放电过程。CMOS反相器的平均传输延迟时间约为10ns。

二、CMOS门电路

1.与非门电路

下图是2输入端CMOS与非门电路,其中包括两个串联的N沟道增强型MOS管和两个并联的P沟道增强型MOS管。每个输入端连到一个N沟道和一个P沟道MOS管的栅极。当输入端A、B中只要有一个为低电平时,就会使与它相连的NMOS管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B全为高电平时,才会使两个串联的NMOS管都导通,使两个并联的PMOS管都截止,输出为低电平。

因此,这种电路具有与非的逻辑功能,即
n个输入端的与非门必须有n个NMOS管串联和n个PMOS管并联。

2.或非门电路

下图是2输入端CMOS或非门电路。其中包括两个并联的N沟道增强型MOS管和两个串联的P沟道增强型MOS管。

当输入端A、B中只要有一个为高电平时,就会使与它相连的NMOS管导通,与它相连的PMOS管截止,输出为低电平;仅当A、B全为低电平时,两个并联NMOS管都截止,两个串联的PMOS管都导通,输出为高电平。
因此,这种电路具有或非的逻辑功能,其逻辑表达式为

显然,n个输入端的或非门必须有n个NMOS管并联和n个PMOS管并联。
比较CMOS与非门和或非门可知,与非门的工作管是彼此串联的,其输出电压随管子个数的增加而增加;或非门则相反,工作管彼此并联,对输出电压不致有明显的影响。因而或非门用得较多。

3.异或门电路

上图为CMOS异或门电路。它由一级或非门和一级与或非门组成。或非门的输出。而与或非门的输出L即为输入A、B的异或

如在异或门的后面增加一级反相器就构成异或非门,由于具有的功能,因而称为同或门。异成门和同或门的逻辑符号如下图所示。

三、BiCMOS门电路

双极型CMOS或BiCMOS的特点在于,利用了双极型器件的速度快和MOSFET的功耗低两方面的优势,因而这种逻辑门电路受到用户的重视


1.BiCMOS反相器

上图表示基本的BiCMOS反相器电路,为了清楚起见,MOSFET用符号M表示BJT用T表示。T1和T2构成推拉式输出级。而Mp、MN、M1、M2所组成的输入级与基本的CMOS反相器很相似。输入信号vI同时作用于MP和MN的栅极。当vI为高电压时MN导通而MP截止;而当vI为低电压时,情况则相反,Mp导通,MN截止。当输出端接有同类BiCMOS门电路时,输出级能提供足够大的电流为电容性负载充电。同理,已充电的电容负载也能迅速地通过T2放电。
上述电路中T1和T2的基区存储电荷亦可通过M1和M2释放,以加快
电路的开关速度。当vI为高电压时M1导通,T1基区的存储电荷迅速消散。这种作用与TTL门电路的输入级中T1类似。同理 ,当vI为低电压时,电源电压VDD通过MP以激励M2使M2导通,显然T2基区的存储电荷通过M2而消散。可见,门电路的开关速度可得到改善。

2.BiCMOS门电路

根据前述的CMOS门电路的结构和工作原理,同样可以用BiCMOS技术实现或非门和与非门。如果要实现或非逻辑关系,输入信号用来驱动并联的N沟道MOSFET,而P沟道MOSFET则彼此串联。正如下图所示的
2输入端或非门。

当A和B均为低电平时,则两个MOSFET MPA和MPB均导通,T1导通而MNA和MNB均截止,输出L为高电平。与此同时,M1通过MPA和MpB被VDD所激励,从而为T2的基区存储电荷提供一条释放通路。
另一方面,当两输入端A和B中之一为高电平时 ,则MpA和MpB的通路被断开,并且MNA或MNB导通,将使输出端为低电平。同时,M1A或M1B为T1的基极存储电荷提供一条释放道路。因此 ,只要有一个输入端接高电平,输出即为低电平。

四、CMOS传输门

MOSFET的输出特性在原点附近呈线性对称关系,因而它们常用作模拟开关。模拟开关广泛地用于取样——保持电路、斩波电路、模数和数模转换电路等。下面着重介绍CMOS传输门。

所谓传输门(TG)就是一种传输模拟信号的模拟开关。CMOS传输门由一个P沟道和一个N沟道增强型MOSFET并联而成,如上图所示。TP和TN是结构对称的器件,它们的漏极和源极是可互换的。设它们的开启电压|VT|=2V且输入模拟信号的变化范围为-5V到+5V 。为使衬底与漏源极之间的PN结任何时刻都不致正偏 ,故TP的衬底接+5V电压,而TN的衬底接-5V电压 。两管的栅极由互补的信号电压(+5V和-5V)来控制,分别用C和表示。
传输门的工作情况如下:当C端接低电压-5V时TN的栅压即为-5V,vI取-5V到+5V范围内的任意值时,TN均不导通。同时,TP的栅压为+5V
,TP亦不导通。可见,当C端接低电压时,开关是断开的。
为使开关接通,可将C端接高电压+5V。此时TN的栅压为+5V ,vI在-5V到+3V的范围内,TN导通。同时TP的棚压为-5V ,vI在-3V到+5V的范围内TP将导通。
由上分析可知,当vI<-3V时,仅有TN导通,而当vI>+3V时,仅有TP导通当vI在-3V到+3V的范围内,TN和TP两管均导通。进一步分析
还可看到,一管导通的程度愈深,另一管的导通程度则相应地减小。换句话说,当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管系并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS传输出门的优点。
在正常工作时,模拟开关的导通电阻值约为数百欧,当它与输入阻抗为兆欧级的运放串接时,可以忽略不计。
CMOS传输门除了作为传输模拟信号的开关之外,也可作为各种逻辑电路的基本单元电路。

② 电吉他电路加那些是做什么用的

所谓效果器,顾名思义,给音色施加effect(效果、影响),不仅是电吉他,许多乐器、合唱等都使用它,当您听到的音乐,基本上都是经过加工而制成的。而不经过加工的音乐(no,effector)就给人一种美中不足的感觉。可以说效果器在音乐的构成中,已经是必不可少的了。

在此,就电吉他所使用的代表性的效果器作一解说。作为有效地使用效果器的入门指南,希望在制造出优质音响的同时,能把这作为研究效果器在其他乐器中的蔽掘使用方法,在构成音乐全体中效果器的理想状态等方面问题的第一步。

吉他演奏如果只能弹奏颂伍的话,是不能称为合格的。弹奏曲子、乐句时,必须能迅速定出与弹奏本人的个性相适合的音色来。如果音色、音量错了,好好的乐句就成了毫无意义的东西,又破坏了它的协调性(统一性)。
目前,效果器的品种有增多的趋势,为适应各种流派的摇滚乐队需要,同一品种的效果器又分出许多花式规格,形式也多样化。有的效果器是直接安装在电吉他上的;有的装在音箱里;有的制成挂在腰间使用,多数制成踏板式,各有它的长处又各有不足。

大家知道,电吉他乐手在演奏中,不能有瞬间的中断(脱袖子)、除非乐曲标有休止符,否则是不能伸手去调校效果器的。

实际使用过程中证明,以脚踏式效果器最方便,尤以单个的踏板式效果器最受青睐,它可以自由组合、任意变化。我国市场上常见的效果器牌子有雅马哈(YAMAHA)、博斯(BOSS)、依班挪(IBANEZ)、罗兰(ROLAND)、爱利亚(ARIA)、摇滚巨星(ROCKTEK)、亚里安(ARION)以及国产的野马牌(YEMA)等。有金属外壳和塑壳的,造型各异,品质与性能略有不同,价格相差近信,选购时以实际操作试听妥。多数效果器与使用的电吉他和音箱有关,选购时必须确认电吉他与音箱良好,并调到正常状态,才能作出比较。无论什么牌子的效果器,为适应各种电吉他和音箱的要求,有几项主要电气性能基本上是一致的,例如:电源电压直流9伏(电池用6F22型)、输入阻抗200~470ho.输出阻抗10k民最大输入电子1伏,最大输出电平1伏、噪声电平小于50~110分贝、插孔规格伽.25mm,消耗电流1.5~50毫安培。虽然会有较大误差,但超过许多或试听时出现异常,应考虑是否品质不良造成。

业余条件下选购时应注意以下几点:

(1)外观无损、文字清晰。

(2)各开关、旋钮、插孔可靠、调整顺滑、有效。

(3)效果作用明显、音质好、无较大的杂音、放置平稳(脚踏式)。
现将常用踏板式效果器作用与特点简介如下,供选用时参考:

失真器(Distortion)

俗称沙声器。早期的法鼓器(F。一演变而来。是一种将电吉他声音故意造成严重失真,使声音变成沙哑的装置。电吉他声音通过失真器的调变之后,可产生柔软的沙哑声或清脆刺耳的沙声。持续音很长以延长音符时值。有“电的萨克斯”之称,是摇滚乐用得最多的一种效果器,常在歌曲的前奏、问麦、结尾、华彩独奏中加入,也用于摹仿初、响弦小鼓灯节奏,发“查,查”声,演奏手法多变,不—一列举。近年来,这一效果器又有了新的发展,名堂甚多。例仅超反馈失真、重金属失真、涡轮失真、管爆失真、强烈亮度失真,其主流是音色趋向尖、硬、亮、强、嚎方向发展;以增强刺激。

驱动器(OverDrive)

超速驱动器、激励器。利用适度的畸变(失真)、产生管乐般失真效果,模拟管乐音色。常用于电吉他主旋律领奏、前奏、问奏、结尾等中加入。可产生从柔和圆润到金属般的激昂的管或压缩器(Comvresso,是一种能够压缩高电平、提升低电平,具有改变或放大波形作用的效果器。它与失真器不同的是提供不失真的多种弹奏音色,并能延长音符或缩短音符的时值,可产生打击音或长延音。

合唱(Chorus)

又称和声器,是利用BBD电路,使声波产生延迟后与正常声波混和,通主、右两个声道输出,从而使电吉他的声音左右游移回荡、柔美宽广像混声大合唱的效果。如果只用一个输出端则立体大合唱效果较差。合唱效果器常用于弹奏分解和弦或和弦伴奏。它那轻柔飘逸,缥缈回荡的声音给人以抒情的感受。

移相器(Phaser)

是利用经过移相的声波与原声波之间互相干涉作用,使声音产生颇震、固族飘逸效果。它与合唱器不同的是声音具有颜震感。早期用得较多的效果器之一。

弗兰格(Flanger)

又称哇音器。它的电路原理基本与合唱相同,加了反馈野并或电路。是一种产生额震音响的效果器,它与合唱不同的是声音具有旋转、飘逸、晚代感觉,缓慢时如太空梦幻、悠悠钟声。快速时发水波声或发鸡哇音,也能产生强烈如喷气发动机声。音色变化较多。常用于在乐曲(歌曲伴奏)中添加特效,以增强艺术感染力。

延时器(Delay)

是产生混响或回声的效果器。有模拟延时器,数字延时器、混响器等c它们的原理基本相同,广泛用于舞台音响,卡拉OK。延迟时间可以从50毫秒到1秒以上,电吉他用的延时器一般为20~476毫秒之间,时间短产生混响效果(大厅效应人时间长则产生回声(山谷效应人电吉他通过延时器之后声音丰富、饱满、有空间感。回声,则常用于电吉他演奏最高潮时最末一个音符加入,以便出现几个反射回声,情似对山谷呼喊。

哇音器(WAH)

不同于弗兰格。它的发音好似张嘴与合嘴产生的鸡——哇或哇——鸣声。缓慢时像人们切切丝语,快速时像青蛙叫,用于电吉他演奏诙偕、活泼的乐曲。也可U调出像拉弦乐器的音调,例如:国际朝阳电子乐队演奏的《戈文达》一曲,就用了这种效果。

均衡器(Equalize)

又称频率补偿器、参数均衡器、用于调整电吉他的频响曲线。由于电吉他的频带中心比一般扩音机低二个信频程.哪从业*E下降到250H助,一般的扩音机音调控制器无法调整电吉他的中、高音区。只有专用的均衡器才能胜任。同时,均衡器可以设定电吉他的音调状态,以便在乐曲中的某一段表现明亮欢快或深沉宽厚的色彩,需要加入时只要踩一下开关即可十分方便。

音色提升(TOneB00Ate)

是提升电吉他高频段的装置、跃升量达20分贝。它不同于均衡器可任意调整全频带而只提升高音。常用于领奏时突出表现电吉他明亮欢快的音色,强调金属音。在用失真器进行迎泰华彩乐段时,同时加入这一效果,更具强烈明亮的金属音色彩。八度音,可将电吉他的音程降低一个或二个八度的装置,以扩展电吉他在低音区的表现,可像电信司那样演奏。

音量踏板(P刨alVolume)

虽然在电吉他面板上或音箱上都有音量控制器,但这里的音量踏板用途有别于一般的音量控制器,它是作为表情踏板使用的。乐谱中标有强弱音记号时如*《或PPP等。就要用音量踏板控制音量的起伏变化。在摇滚电吉他奏法中在一种volume奏法(音量奏法),是利用音量踏板或用右手小指旋转电吉他上的音量电位器,弹出没有音头而音量渐增的声音,像拉小提琴,有若隐若现的感觉。只要会利用还可产生其他效果。

限幅器(Timiter)

用于排除电吉他信号在传输中出现的过载或不良瞬变发生,当电平仍然超值时,内设的压控放大器(VCA)bo以压缩,使声音不产生严重失真。

噪声门(NOISE-Gate)

当电路接线过长,效果器串联过多,能消除不良哼声和噪声,使电吉他的声音保持纯净优美。

③ 门电路的抗干扰能力取决于什么

门电路的抗干扰能力取决于噪声容限。
噪声容限(英语:Noise Margin)是指在前一极输出为最坏的情况下,专为保证后一极正常工作,所允许的最大噪声幅度。在数字电路中,一般常以“1”态下(上)限噪声容限和“0”态上(下)限噪声容限中的最小值来表示电路(或元件)的噪声容限。噪属声容限越大说明容许的噪声越大,电路的抗干扰性越好。

阅读全文

与噪声门电路相关的资料

热点内容
博世充电电钻维修视频 浏览:234
丰县长青家电维修电话 浏览:732
售后心得总结怎么写 浏览:428
华硕矿卡保修 浏览:889
电子产品发票和保修卡 浏览:658
投诉西门子售后服务 浏览:793
深圳路虎捷豹维修中心 浏览:776
地铁防水板多少钱一平方 浏览:940
国家电网人工服务电话号码多少 浏览:197
芜湖绿致4s店售后服务部 浏览:928
桐乡美的电器维修中心在那里 浏览:127
金立东莞维修点在哪里 浏览:585
数控装调维修工视频教学 浏览:736
地下室防水布如何施工 浏览:801
28个卫生间大概要多少防水材料 浏览:129
运城家电市场三星专卖店电话是多少 浏览:906
一号家居网客服 浏览:779
奥迪把手坏了三年内保修吗 浏览:562
注册维修站需要什么资料 浏览:542
眉山清神厨房电器维修 浏览:279