❶ 试用单一运算放大器,设计一个减法电路,输入为电压V1和V2,输出为V3=V2-V1。
实用电路如下图,其中R1=R2,R3=R4,R5=R6。如果V3的范围是-6V~+6V,运放的工作电源电压设置为±9V为宜,这是考虑到运放可能不是满电源幅度输出的型号。
❷ 怎么用运放设计音频限幅电路,力求精度
如何用运算放大器构成最精确的限幅器
匹配模拟信号的电压范围与模数转换器 (ADC) 的输入范围可能是个挑战。超过 ADC 的输入范围将导致不正确的读数,而且如果输入超出电源轨范围太多,衬底电流就有可能流入 ADC,这有可能导致闭锁甚至损坏器件。可是,将输入电压范围限制到较低和较保守的水平,又浪费了 ADC 的动态范围和分辨率。
图 1 所示的简单运算放大器限幅器防止了上述问题。最大可允许输入电压加到 U1 的非反相输入上,输出通过小信号二极管 D1 反馈到反相输入。ADC 的基准电压如果可用,可以用作限幅基准。当输入电压低于基准时,U1 的输出被驱动至正轨,D1 被反向偏置,输入信号无改变通过。当输入高于箝位电压时,运算放大器输出反向,通过 D1 关闭环路,从而有效地成为一个单位增益跟随器,跟随箝位电压。输入电阻器 R1 限制运算放大器输出必须吸取的电流。第二个运算放大器 U2 执行互补的负向限幅功能,防止信号低于地电平。因此在这个例子中,输出信号限制在 4.096V 至 0V 之间。
图4
这个电路的另一个限制是,输出阻抗由 R1 决定,该阻抗必须至少是几百欧姆,以限制运算放大器的输出电流。有些 ADC 必须由低阻抗驱动,因此也许需要缓冲放大器 U3。采用四通道 LT6017 就可以用单个器件完成所有这些功能。
❸ 运放电路设计步骤
偏置电流如何补偿
对于我们常用的反相运算放大器,其典型电路如下:
在这种情况下,R3为平衡电阻,这样,在可以很好的保证运放的电流补偿,使正负端偏置电流相等。若这些运算放大器知识你注意到了时,甚至取值更大时,会产生更大的噪声和飘溢。但是,应大于输入信号源的内阻。
善于思考的工程师都会想到,当为同相放大器的时候,其原理又是什么呢?现在我们先回顾下同相运放的设计电路:
当计算出的Rp为负值时,需要将该电阻移动到正相端,与R1串联在输入端。
这里额外多插入一句,同相比例运放具有高输入阻抗,低输出阻抗的特性,广泛应用在前置运放电路中。
调零电路的问题
今天运放已经发展的很迅速,附注功能各式各样,例如有些运放已经具有了调零的外接端口,此时依据数据手册进合适的电阻选择就可以完成运放调零。例如LF356运放,其典型电路如下:
另外一些低成本的运放或许不带这些自动调节功能,那么作为设计师的我们也不为难,通过简单的加法电路、减法电路等可以完成固定的调零(虽然有时这种做法有隔靴挠痒的作用)。
当要进行通常在补偿电路中增加一个三极管电路,利用PN结的温度特性,完成运放的温度补偿。例如在LF355典型电路中将三极管电路嵌入在V+和25K反馈电阻之间
❹ 集成运算放大器构成基本运算电路的方法
集成运算放大器的基本电路有:
1)同相放大器
2)反相放大器
3)加法器
4)减法器
........
构成方法请参考以下资料:
http://wenku..com/view/8ee3d60979563c1ec5da715e.html?from=rec&pos=0&weight=109&lastweight=63&count=5
❺ 集成运算放大电路的应用设计要求实现V0=2V1-V2 求电路图啊
基本运放如上图,设Rg跟R2比例是无限大即+输入内=V2,
而 Vo=V2+(V2-V1)Rf/R1
=V2+V2Rf/R1-V1Rf/R1
如果Rf:R1=1:1
即得出容 Vo=2V2-V1。
❻ 放大器的运算放大器设计
运算放大器是模数转换电路中的一个最通用、最重要的的单元。全差分运放是指输入和输出都是差分信号的运放, 与普通的单端输出运放相比有以下几个优点: 输出的电压摆幅较大;较好的抑制共模噪声;更低的噪声;抑制谐波失真的偶数阶项比较好等。因此通常高性能的运放多采用全差分形式。近年来,全差分运放更高的单位增益带宽频率及更大的输出摆幅使得它在高速和低压电路中的应用更加广泛。随着日益增加的数据转换率, 高速的模数转换器需求越来越广泛, 而高速模数转换器需要高增益和高单位增益带宽运放来满足系统精度和快速建立的需要。速度和精度是模拟电路两个最重要的性能指标,然而,这两者的要求是互相制约、互为矛盾的。所以同时满足这两方面的要求是困难的。折叠共源共栅技术可以较成功地解决这一难题, 这种结构的运放具有较高的开环增益及很高的单位增益带宽。全差分运放的缺点是它外部反馈环的共模环路增益很小, 输出共模电平不能精确确定,因此,一般情况下需加共模反馈电路 。
运放结构的选择
运算放大器的结构重要有三种:(a) 简单两级运放,(b)折叠共源共栅,(c)共源共栅,如图1 的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V, 即输出端的所有NMOS 管的VDSAT,N 之和小于0.5V,输出端的所有PMOS 管的VDSAT,P 之和也必须小于0.5V 。
主运放结构
该运算放大器存在两级:(1)Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 。
共模负反馈
对于全差分运放, 为了稳定输出共模电压,应加入共模负反馈电路。在设计输出平衡的全差分运算放大器的时候,必须考虑到以下几点:共模负反馈的开环直流增益要求足够大,最好能够于差分开环直流增益相当;共模负反馈的单位增益带宽也要求足够大,最好接近差分单位增益带宽;为了确保共模负反馈的稳定, 一般情况下要求进行共模回路补偿;共模信号监测器要求具有很好的线性特性;共模负反馈与差模信号无关, 即使差模信号通路是关断的 。
该运算放大采用连续时间方式来实现共模负反馈功能。
该结构共用了共模放大器和差模放大器的输入级中电流镜及输出负载。这样,一方面降低了功耗; 另一方面保证共模放大器与差模放大器在交流特性上保持一致。因为共模放大器的输出级与差模放大器的输出级可以完全共用,电容补偿电路也一样。只要差模放大器频率特性是稳定的,则共模负反馈也是稳定的。这种共模负反馈电路使得全差分运算放大器可以像单端输出的运算放大器一样设计, 而不用考虑共模负反馈电路对全差分放大器的影响 。
电压偏置电路:宽摆幅电流
在共源共栅输入级中需要三个电压偏置,为了使得输入级的动态范围大一些,宽摆幅电流源来产生所需要的三个偏置电压 。
❼ 闆嗘垚杩愮畻鏀惧ぇ鍣ㄧ殑鍏稿瀷鐢佃矾鏈夊摢浜涳紵
闆嗘垚杩愮畻鏀惧ぇ鍣ㄧ殑鍏稿瀷鐢佃矾鏈夛細
1銆佸弽鐩告瘮渚嬭繍绠楃數璺
鍙嶅悜姣斾緥杩愮畻鐢佃矾濡傚浘2鎵绀恒傛牴鎹鐢佃矾鍒嗘瀽锛岃繖绉嶇數璺鐨勮緭鍑虹數鍘嬩负
鍚戝乏杞瑋鍚戝彸杞
鍥5 寰鍒嗗櫒