导航:首页 > 电器电路 > 数字电路实验装置

数字电路实验装置

发布时间:2024-06-24 16:22:39

① 数字时钟的数字时钟设计

数字电子技术的迅速发展,使各种类型集成电路在数字系统、控制系统、信号处理等方面得到了广泛的应用。为了适应现代电子技术的迅速发展需要,能够较好的面向数字化和专用集成电路的新时代,数字电路综合设计与制作数字钟,可以让我们了解数字时钟的原理。在实验原理的指导下,培养了分析和设计电路的能力。并且学会检查和排除故障,提高分析处理实验结果的能力。
数字时钟是一种用数字电路技术实现时、分、秒计时的装置。与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,已得到广泛的使用。数字钟从原理上讲是一种典型的数字电路,一般是由振荡器、分频器、计数器、显示器等几部分组成。其中包括了组合逻辑电路和时序电路。数字钟的设计方法有许多种,例如:可用中伏携小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等等。
数字时 钟以其体积小、重量轻、抗干扰能力强、对环境要求高、高精确性、容易开发等特性,在工业控制系统、智能化器仪表、办公自动化等诸多领域取得了极为广泛的应用,诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、腔丛自动启闭路灯、定时开关烘箱、伍厅樱通断动力设备、甚至各种定时电气的自动启用等。

② 数字电路设计实验报告(5选1即可)

目录
1 设计目的 3
2 设计要求指标 3
2.1 基本功能 3
2.2 扩展功能 4
3.方案论证与比较 4
4 总体框图设计 4
5 电路原理分析 4
5.1数字钟的构成 4
5.1.1 分频器电路 5
5.1.2 时间计数器电路 5
5.1.3分频器电路 6
5.1.4振荡器电路 6
5.1.5数字时钟的计数显示电路 6
5.2 校时电路 7
5.3 整点报时电路 8
6系统仿真与调试 8
7.结论 8
参考文献 9
实验作品附图 10

数字钟

摘要:
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。目前,数字钟的功能越来越强,并且有多种专门的大规模集成电路可供选择。
从有利于学习的角度考虑,这里主要介绍以中小规模集成电路设计数字钟的方法。
经过了数字电路设计这门课程的系统学习,特别经过了关于组合逻辑电路与时序逻辑电路部分的学习,我们已经具备了设计小规模集成电路的能力,借由本次设计的机会,充分将所学的知识运用到实际中去。
本次课程设计要求设计一个数字钟,基本要求为数字钟的时间周期为24小时,数字钟显示时、分、秒,数字钟的时间基准一秒对应现实生活中的时钟的一秒。供扩展的方面涉及到定时自动报警、按时自动打铃、定时广播、定时启闭路灯等。因此,研究数字钟及扩大其应用,有着非常现实的意义。
1 设计目的
1.掌握数字钟的设计、组装与调试方法。
2.熟悉集成元器件的选择和集成电路芯片的逻辑功能及使用方法。
3.掌握面包板结构及其接线方法
4.熟悉仿真软件的使用。
2 设计要求及指标
2.1基本功能
1)时钟显示功能,能够正确显示“时”、“分”、“秒”。
2)具有快速校准时、分、秒的功能。
3)用555定时器与RC组成的多谐振荡器产生一个标准频率(1Hz)的方波脉冲信号。
2.2扩展功能
1)用晶体振荡器产生一个标准频率(1Hz)的脉冲信号。
2)具有整点报时的功能。
3)具有闹钟的功能。
4)……

3、方案论证与比较
本设计方案使用555多谐振荡器来产生1HZ的信号。通过改变相应的电阻电容值可使频率微调,不必使用分频器来对高频信号进行分频使电路繁复。虽然此振荡器没有石英晶体稳定度和精确性高,由于设计方便,操作简单,成为了设计时的首选,但是由于与实验中使用的555芯片产生的脉冲相比较,利用晶振产生的脉冲信号更加的稳定,同过电压表的测量能很好的观察到这一点,同时在显示上能够更加接进预定的值,受外界环境的干扰较少,一定程度上优于使用555芯片产生信号方式。我们组依然同时设计了555和晶振两个信号产生电路。(本实验报告中着重按照原方案设计的555电路进行说明)
4、 系统设计框图
数字式计时器一般由振荡器、分频器、计数器、译码器、显示器等几部分组成。在本设计中555振荡器及其相应外部电路组成标准秒信号发生器,由不同进制的计数器、译码器和显示器组成计时系统。秒信号送入计数器进行计数,把累计的结果以‘时’、‘分’、‘秒’的数字显示出来。‘时’显示由二十四进制计数器、译码器、显示器构成,‘分’、‘秒’显示分别由六十进制计数器、译码器、显示器构成。其原理框图如图1.1所示。

5、电路原理分析

5.1数字钟的构成
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定.在此使用555振荡器组成1Hz的信号。

数字钟原理框图(1.1)

5.1.1振荡器电路
555定时器组成的振荡器电路给数字钟提供一个频率为1Hz的方波信号。其中OUT为输出。

5.1.2时间计数器电路
时间计数电路由秒个位和秒十位计数器,分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为24进制计数器.

5.1.3分频器电路
通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频。
通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现。例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768( ),即实现该分频功能的计数器相当于15级2进制计数器。

5.1.4振荡器电路
利用555定时器组成的多谐振荡器接通电源后,电容C1被充电,当电压上升到一定数值时里面集成的三极管导通,然后通过电阻和三极管放电,不断的充放电从而产生一定周期的脉冲,通过改变电路上器件的值可以微调脉冲周期。

5.1.5数字时钟的计数显示控制
在设计中,我们使用的是74**160十进制计数器,来实现计数的功能,实验中主要用到了160的置数清零功能(特点:消耗一个时钟脉冲),清零功能(特点:不耗时钟脉冲),在上级160控制下级160时候通过组合电路(主要利用与非门)实现,在连接电路的时候要注意并且强调使能端的连接,其将影响到整一个电路的是否工作。

电路的控制原理如下:
秒钟由个位向十位进位:0000—0001—0010—0011—0100—0101—0110—0111—1000—1001实现个位的计数,采用的是置数的方式(利用RCO端口),当电路计数到1001的时候采用一个二输入与非门接上级输入的高位和低位输出作为下级的信号,实现了秒区的个位和十位的显示与控制。设计中注意到接的是一个与非门而不是与门,目标在产生一个时钟脉冲。实现正确的显示。
由秒区向分区的显示控制:
基本原理同上,在秒区十位向时区个位显示的时:0000—0001—0010—0011—0100—0101产生了六个脉冲的时候向下级输出一个时钟脉冲,利用的还是与非门,目标仍是实现正确的计时显示。
分区的显示及整体电路反馈清零:
当数值显示达到:23:59的时候要实现清零的工作,采用CLR清零的方式反馈清零。具体设计接出控制端的9,5,3,2用十六进制表示后高电平对应引脚接与非,将非门输出信号的值反馈给各个160芯片的清零端(CLR)既可以实现清零了。

5.2 校时功能的实现
当重新接通电源或走时出现误差时都需要对时间进行校正.通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可.
根据要求,数字钟应具有分校正功能,因此,应截断分个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中.
在实验实现过程中使用的是通过开关(普通开关)来实现高低电平的切换,手动赋予需要的高低电平来实现脉冲的供给,将脉冲提供到所需要的输入(CLK)端口,实现校时,仿真过程中能够正常校时并且在校时的时候达到了预定的效果;而在我们进入实际电路连接的时候,利用开关(手控导线点触实现)来实现校时再不像仿真那样的精确了,原因分析是由于使用的是普通的开关同时利用的是手动的对CLK端口赋予脉冲信号,在实现手动生成脉冲信号的过程中产生了扰动,即相当于产生了多个的脉冲信号对需要的数码管进行校时,如此,并没有达到仿真的精确效果,但是在实验中通过改进电路的校时方式,不是用手触开关产生脉冲信号(如若需用手触则需要使用一个锁存器实现去抖动,才能够在脉冲生成时候不产生干扰的脉冲,实现正常的校时),而是使用信号发生器实现信号的提供,对需要校时的数码管在相对应的CLK端口提供脉冲信号实现校时,利用此方式实现校时则比手触开关方式效果要好。

5.3 报时的实现
报时功能的实现原理较为简单,即对所需要报时的输出量进行控制,并对控制产生的信号作为LED显示的信号源,电路连接中要注意到的是在实现LED显示的时候最好连接上一个保护电阻对LED灯器到保护的作用。例如我们的校时时间是 23:59,0010—0011—0101—1001;利用相应的门电路实现满足端口输出是上述条件的时候进行报时即可。

6、系统仿真与调试

7、结论
学贵以致用,通过几天的数字钟设计过程,将从书本上学到的知识应用于实践,学会了初步的电子电路仿真设计,虽然过程中遇到了一些困难,但是在解决这些问题的过程无疑也是对自己自身专业素质的一种提高。当最终调试成功的时候也是对自己的一种肯定。在当前金融危机大的社会背景下,能够增加自身砝码的不仅仅是一纸文凭证书,更为重要的是毕业生是否能够适应社会大潮流的需要,契合企业的要求即又较硬的动手操作及设计能力。此次的设计作业不仅增强了自己在专业设计方面的信心,鼓舞了自己,更是一次兴趣的培养,为自己以后的学习方向的明确了重点。
另外在这次实验中我们遇到了不少的问题针对不同的问题我们采取不同的解决方法,最终一一解决设计中遇到的问题。还有在实验设计中我们曾遇到多块芯片以及数码管损坏的情况造成了数字钟的显示没有达到预期的效果,或是根本不显示,通过错误排除最终确认是元件问题,并向老师咨询跟换元件最终的到解决。在我们曾经遇到不懂的问题时,利用网上的资源,搜索查找得到需要的信息。

62

③ 怎样用74161设计一个同步十进制计数器电路

标题:图8 30状态移位计数器的PSP ICE模拟 F ig.8 PSP ICE s im u lation of th irty-state sh ift coun ter
篇名:双边沿移位寄存器的设计原理及其应用
说明:数器.作者对设计出的30状态移位计数器进行PSP ICE模拟,其工作波形如图8所示.图中,起始状态为11110,中止状态为11101.其逻辑功能达到了设计CJFD2004

标题:图1单光子干涉和路由实验原理简图LD为激光器,attn为衰减器,cir为环形器,C为耦合器,PC1,PC2,PC3和PC4为偏振控制器,PM1和PM2为相位调制器,SSG为同步信号发生器,cnt为光子计数器,DSG为延迟信号发生器,D1和D2为单光子探测器
篇名:光纤Sagnac干涉仪中单光子干涉及路由控制
说明:如图1所示,由分束比为50%:50%耦合器(C)、4个偏振控制器(PC1,PC2,PC3,PC4)、两个相位调制器(PM1,PM2)和长距离光纤连接成Sagnac环形干涉仪.CJFD2004

标题:图1十进制计数器的顶层原理图
篇名:基于EDA软件ispLEVER的现代数字系统设计
说明:(2)打开原理图编辑器,画出十进制计数器的顶层原理图,如图1所示。需要说明的是不同的数字系统其引脚锁定是不一样的,为了便于在实验箱验证蒀JFD2004

标题:图1定时器/计数器1的电路结构
篇名:PIC16F87X单片机异步计数器的应用
说明:定时器/计数器1的电路结构如图1.当TMR 1CS=1时选择计数器工作方式,当TMR 1CS=0时选择定时器工作方式.在计数器工作方式下外部计数信号的引CJFD2004

标题:图1模为12的计数器电原理图
篇名:在数字电路教学中引入现代EDA技术
说明:以使用74161设计一个模为12的加法计数器为例,电原理图如图1所示.其中引脚的安排:en为使能端;clear为清零端;clk为时钟;q0\q1\q2\q3为信号碈JFD2004

标题:图1传统8421码十进制递增计数器电路实现 F ig.1 C ircu it rea lization of dec im a l up-coun ter encoded by 8421BCD 图2多码分配后的十进制计数器状态卡诺图 F ig.2 K-m ap of dec im a l up-coun ter bym u lti-code state ass igm en t
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:根据激励函数,就可以设计出基于8421码的同步十进制计数器电路,如图1所示.

标题:图2多码分配后的十进制计数器状态卡诺图 F ig.2 K-m ap of dec im a l up-coun ter bym u lti-code state ass igm en t
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:在传统的8421码编码中,可看到编码状态冗余24-10=6个.利用多码分配技术,对状态进行重新分配,图2是根据6=3+3,分成两个四码编码后分配得到的CJFD2004

标题:图3多码分配后的门控8421码十进制计数器电路实现 F ig.3 C ircu it rea lization of dec im a l up-coun ter by clock-gated and m u lti-code state ass igm en t
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:比较前后两次激励函数可知,经过多码分配后,部分地增加了组合电路的复杂性,同时,容易看到Q3具有最高的优先权,即当Q3=1时,Q2、Q1的值就可以CJFD2004

标题:图4余三循环码十进制计数器状态卡诺图 F ig.4 S tate K-m ap of dec im a l up-coun ter encoded byexcess three code
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:P=12Cl·VD2D·fclk·Esw,式中,Cl为该节点的物理电容,VDD为电源电压,fclk为时钟频率,Esw(称为开关活动性)是每个时钟周期1/fclk中的平均输CJFD2004

标题:图5余三循环码十进制计数器电路实现 F ig.5 C ircu it rea lization of dec im a l up-coun ter encoded by excess three code
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:Q′0=Q3Q1+Q3Q2Q1.其实现电路如图5.同样,这种编码不可避免地存在有冗余状态.表2、图6是根据6=3+3,分成两个四码编码分配得到的非冗余状态稢JF

阅读全文

与数字电路实验装置相关的资料

热点内容
家具软件开发 浏览:533
宁波万和燃气灶售后维修 浏览:576
京东售后维修需要多久 浏览:694
维修工程都需要什么资料 浏览:555
小区维修基金去哪里了 浏览:677
莱芜格力空调维修电话是多少 浏览:295
小熊照相电路 浏览:953
电路开发图 浏览:397
淘宝订单怎么取消售后 浏览:174
去国美买家电怎么讲价 浏览:73
森海塞尔售后怎么样 浏览:554
飞达家电维修怎么样 浏览:549
昆山东风车维修在哪里 浏览:996
特选家具 浏览:563
重庆罗技维修点 浏览:190
小天才电话手表在哪里维修兰州 浏览:142
小米扫地机器怎么维修 浏览:327
幼师家用电器教案 浏览:516
家电路坏了 浏览:696
妄想山海怎么维修武器 浏览:656