❶ 求LED驱动电源电路图
1.非隔离式恒流电源:非隔离是指在负载端和输入端有直接连接,因此触摸负载就有触电的危险。
目前用得最多的是非隔离直接降压型电源。也就是把交流电整流以后得到直流高压,然后就直接用降压(Buck)电路进行降压和恒流控制。其电原理图如下图所示:
这种非隔离式电源的主要技术特点:从18V到450V的宽电压输入范围,恒流输出;采用频率抖动减少电磁干扰,利用随机源来调制振荡频率,这样可以扩展音频能量谱,扩展后的能量谱可以有效减小带内电磁干扰,降低系统级设计难度;可用线性及PWM调光,支持上百个0.06WLED的驱动应用,工作频率25KHz-300KHz,可通过外部电阻来设定。1.非隔离恒流源的优点是简单、指标高,它的输出电流可以按LED串并联的个数决定。但是大多数情况下,它的输出电流不能太大,输出电压也不能太高。例如264个小功率LED连接成22个串联,12串并联,每串20mA,一共240mA。体积也可以做得很小,通常是做成长条形的,以便放进T10或T8的管子里。假如每串的电流是30mA,12并就是360mA。在有些非隔离的电源中就无法实现,为了保持总电流240mA不变,就只能改成8串并联。但假如LED的总数不变,就要求串联的数目增加到33个。这时候总电压就会增加到108.9V。但是通常这种非隔离恒流源的允许的最高输出电压是80V。只能维持原来的22串,这样LED的总数就只能是176颗,即使采用30mA,其总流明数有可能不能满足要求。通常其效率大约在88-90%之间,功率因素大约在0.88-0.92之间。然而这种非隔离电源也有一些局限性,因为非隔离的电源会把交流电源的高压引入到负载端,从而引起触电的危险。通常LED和铝散热器之间的绝缘也就靠铝基板的印制板的薄膜绝缘。虽然这个绝缘层可以耐2000V高压,但有时螺丝孔的毛刺会产生所谓的爬电现象,使得难以通过CE论证。
.隔离式恒流电源:隔离式是指在输入端和输出端有隔离变压器隔离,这种变压器可能是工频也可能是高频的。但都能把输入和输出隔离起来。可以避免触电的危险。一般来说,由于加入了变压器,所以隔离式电源的效率会有所降低,通常大约在88%左右。而且变压器的体积也比较大。放进T10灯管还可以,但是放进T8的灯管就比较紧张。
❷ LED手电驱动电路原理图,急求更直白的解析
1 通电瞬间 电感视为开路,所以T1电位低于e
2这里电容起到储能的作用,充电后电压和电感的自感电势叠加达到升压的目的。
3自激震荡。
❸ LED驱动电源电路图是怎样的
LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电源转换器,通常情况下LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。
220V电源输入的LED灯驱动电路图及原理图:
❹ 求LED电源恒流电路分析
随着LED照明现在越来越热,作为LED的生命支柱--LED驱动电源也越来越受到人们的关注。
我们都知道电源其实没什么特别,其特点就是需要恒流限压,况且长期工作在满载情况下,所以对效率的要求比较高;有些电源由于结构尺寸的限制,对高度有要求。
下面我就试着就目前中小功率的LED照明电源,谈谈次级恒流的一些常见的方法来一个总结;不一定很全面,也不一定很深入,不过总算能对一些初入行的工程师有些帮助。
声明:电路并非所有的都是原创,贴出来是为了方便讨论,如果涉及到侵权问题,请及时告知本人,以便及时删除。
可以毫不夸张的说,LED驱动电源将直接决定LED灯的可靠性与寿命;作为电源工程师,我们知道LED的特性需要恒流驱动,才能保证其亮度的均匀,长期可靠的发光。
我们先来谈谈比较流行的TL431的几种恒流方式。
1、
单个TL431恒流电路
如上图,即是利用单个TL431恒流的示意图
原理:此电路非常简单,利用了431的2.495V的基准来做恒流,同样限制了LED上面的压降,但优点与缺点同样明显。
优点:
电路简单,元器件少,成本低,因为TL431的基准电压精度高,R12,T13只要采高精度电阻,恒流精度比较高
缺点:
由于TL431是2.5V基准,故恒流取样电路的损耗极大,不适合做输出电流过大的电源。
此电路的致命缺陷是不能空载,故不适合做外置式的LED电源。
大家可以先讨论下,怎样改进缺陷,明天我继续贴出改进型电路。
2、单个TL431恒流改进型电路
如上图,即是利用单个TL431恒流的改进型示意图
原理:此电路同样是利用了TL431的2.495V的基准来做恒流,跟上面的电路不同点在于减少了电流取样电路的电压,只要合计设计R12,R13,R14的值,可以限制LED上面的压降
优点:
电路简单,元器件少,成本低,跟上面电路相比,显著降低了取样电阻的功耗,恒流精度很高,克服了上面的电路不能空载的致命缺陷,当有个别LED击穿时,可以自动调整输出电压
缺点:
当输出空载时,输出电压会有上升,上升幅度由电流取样电路电阻与R12,R13的比值决定
3、两个TL431恒流电路
❺ 单片机的IO驱动LED灯电路,需要用到三极管,求原理图,并说明
搞不明白单片机I/O口驱动LED为什么要用到那么复杂的电路,是单纯的为了复杂而复版杂吗?很晕!如果一个权I/O口驱动一个LED,只要I/O口低电平有效LED串一个470Ω的电阻即可,如果驱动多个LED只要按下图即可:
如果Vcc=5v;则R0=1KΩ-5.1KΩ;Rn=470Ω。如果晶体管用S8550,那么同时点亮5个LED是没问题的。
❻ LED驱动电源的工作原理
LED驱动电源原理介绍
下图为正向压降(VF)和正向电流的(IF)关系曲线,由曲线可知,当正向电压超过某个阈值(约2V),即通常所说的导通电压之后,可近似认为,IF与VF成正比。见表是当前主要超高亮LED的电气特性。由表可知,当前超高亮LED的最高IF可达1A,而VF通常为2~4V。
由于LED光特性通常都描述为电流的函数,而不是电压的函数,光通量(φV)与IF的关系曲线,因此,采用恒流源驱动可以更好地控制亮度。此外,LED的正向压降变化范围比较大(最大可达1V以上),而由上图中的VF-IF曲线可知,VF的微小变化会引起较大的,IF变化,从而引起亮度的较大变化。所以,采用恒压源驱动不能保证LED亮度的一致性,并且影响LED的可靠性、寿命和光衰。因此,超高亮LED通常采用恒流源驱动。
下图是 LED的温度与光通量(φV)关系曲线,由下图可知光通量与温度成反比,85℃时的光通量是25℃时的一半,而一40℃时光输出是25℃时的1.8倍。温度的变化对LED的波长也有一定的影响,因此,良好的散热是LED保持恒定亮度的保证。
下图是LED的温度与光通量关系曲线。
一般LED驱动电路介绍
由于受到LED功率水平的限制,通常需同时驱动多个LED以满足亮度需求,因此,需要专门的驱动电路来点亮LED。下面简要介绍LED概念型驱动电路。
阻限流电路如下图所示,电阻限流驱动电路是最简单的驱动电路,限流电阻按下式计算。
式中:Vin为电路的输入电压: VF为IED的正向电流; VF为LED在正向电流为,IF时的压降; VD为防反二极管的压降(可选); y为每串LED的数目; x为并联LED的串数。
由上图可得LED的线性化数学模型为
式中:Vo为单个LED的开通压降; Rs为单个LED的线性化等效串联电阻。则上式限流电阻的计算可写为
当电阻选定后,电阻限流电路的IF与VF的关系为
由上式可知电阻限流电路简单,但是,在输入电压波动时,通过LED的电流也会跟随变化,因此调节性能差。另外,由于电阻R的接人损失的功率为xRIF,因此效率低。
线性调节器介绍
线性调节器的核心是利用工作于线性区的功率三极管或MOSFFET作为一动态可调电阻来控制负载。线性调节器有并联型和串联型两种。
下图a所示为并联型线性调节器又称为分流调节器(图中仅画出了一个LED,实际上负载可以是多个LED串联,下同),它与LED并联,当输入电压增大或者LED减少时,通过分流调节器的电流将会增大,这将会增大限流电阻上的压降,以使通过LED的电流保持恒定。
由于分流调节器需要串联一个电阻,所以效率不高,并且在输入电压变化范围比较宽的情况下很难做到恒定的调节。
下图b所示为串联型调节器,当输入电压增大时,调节动态电阻增大,以保持LED上的电压(电流)恒定。
由于功率三极管或MOSFET管都有一个饱和导通电压,因此,输入的最小电压必须大于该饱和电压与负载电压之和,电路才能正确地工作。
开关调节器介绍
上述驱动技术不但受输入电压范围的限制,而且效率低。在用于低功率的普通LED驱动时,由于电流只有几个mA,因此损耗不明显,当用作电流有几百mA甚至更高的高亮LED的驱动时,功率电路的损耗就成了比较严重的问题。开关电源是目前能量变换中效率最高的,可以达到90%以上。Buek、Boost和 Buck-Boost等功率变换器都可以用于LED的驱动,只是为了满足LED驱动,采用检测输出电流而不是检测输出电压进行反馈控制。
下图(a)为采用Buck变换器的LED驱动电路,与传统的Buek变换器不同,开关管S移到电感L的后面,使得S源极接地,从而方便了S的驱动,LED 与L串联,而续流二极管D与该串联电路反并联,该驱动电路不但简单而且不需要输出滤波电容,降低了成本。但是,Buck变换器是降压变换器,不适用于输入电压低或者多个LED串联的场合。
上图(b)为采用Boost变换器的LED驱动电源,通过电感储能将输出电压泵至比输入电压更高的期望值,实现在低输入电压下对LED的驱动。优点是这样的驱动IC输出可以并联使用,有效的提高单颗LED功率。
上图(c)为采用Buck—Boost变换器的LED驱动电路。与Buek电路相似,该电路S的源极可以直接接地,从而方便了S的驱动。Boost和 Buck-Boosl变换器虽然比Buck变换器多一个电容,但是,它们都可以提升输出电压的绝对值,因此,在输入电压低,并且需要驱动多个LED时应用较多。
PWM调光知识介绍
在手机及其他消费类电子产品中,白光LED越来越多地被使用作为显示屏的背光源。近来,许多产品设计者希望白光LED的光亮度在不同的应用场合能够作相应的变化。这就意味着,白光LED的驱动器应能够支持LED光亮度的调节功能。目前调光技术主要有三种:PWM调光、模拟调光、以及数字调光。市场上很多驱动器都能够支持其中的一种或多种调光技术。本文将介绍这三种调光技术的各自特点,产品设计者可以根据具体的要求选择相应的技术。
PWM Dimming (脉宽调制) 调光方式——这是一种利用简单的数字脉冲,反复开关白光LED驱动器的调光技术。应用者的系统只需要提供宽、窄不同的数字式脉冲,即可简单地实现改变输出电流,从而调节白光LED的亮度。PWM 调光的优点在于能够提供高质量的白光,以及应用简单,效率高!例如在手机的系统中,利用一个专用PWM接口可以简单的产生任意占空比的脉冲信号,该信号通过一个电阻,连接到驱动器的EN接口。多数厂商的驱动器都支持PWM调光。
但是,PWM 调光有其劣势。主要反映在:PWM调光很容易使得白光LED的驱动电路产生人耳听得见的噪声(audible noise,或者microphonic noise)。这个噪声是如何产生?通常白光LED驱动器都属于开关电源器件(buck、boost 、charge pump等),其开关频率都在1MHz左右,因此在驱动器的典型应用中是不会产生人耳听得见的噪声。但是当驱动器进行PWM调光的时候,如果PWM信号的频率正好落在200Hz到20kHz之间,白光LED驱动器周围的电感和输出电容就会产生人耳听得见的噪声。所以设计时要避免使用20kHz以下低频段。
我们都知道,一个低频的开关信号作用于普通的绕线电感(wire winding coil),会使得电感中的线圈之间互相产生机械振动,该机械振动的频率正好落在上述频率,电感发出的噪音就能够被人耳听见。电感产生了一部分噪声,另一部分来自输出电容。现在越来越多的手机设计者采用陶瓷电容作为驱动器的输出电容。陶瓷电容具有压电特性,这就意味着:当一个低频电压纹波信号作用于输出电容,电容就会发出吱吱的蜂鸣声。当PWM信号为低时,白光LED驱动器停止工作,输出电容通过白光LED和下端的电阻进行放电。因此在PWM调光时,输出电容不可避免的产生很大的纹波。总之,为了避免PWM调光时可听得见的噪声,白光LED驱动器应该能够提供超出人耳可听见范围的调光频率!
相对于PWM调光,如果能够改变RS的电阻值,同样能够改变流过白光LED的电流,从而变化LED的光亮度。我们称这种技术为模拟调光。
模拟调光最大的优势是它避免了由于调光时所产生的噪声。在采用模拟调光的技术时,LED的正向导通压降会随着LED电流的减小而降低,使得白光LED的能耗也有所降低。但是区别于PWM调光技术,在模拟调光时白光LED驱动器始终处于工作模式,并且驱动器的电能转换效率随着输出电流减小而急速下降。所以,采用模拟调光技术往往会增大整个系统的能耗。模拟调光技术还有个缺点在于发光质量。由于它直接改变白光LED的电流,使得白光LED的白光质量也发生了变化!
除了PWM调光,模拟调光,目前有些产商的驱动器支持数字调光。具备数字调光技术的白光LED驱动器会有相应的数字接口。该数字接口可以是SMB、I2C、或者是单线式数字接口。系统设计者只要根据具体的通信协议,给驱动器一串数字信号,就可以使得白光LED的光亮发生变化。
❼ LED路灯驱动电路
自己设计一下,下图希望能对你有所帮助。。。