❶ 怎样一天学完模拟电路,给跪了,
两晚大概够了,是真的,重点就是期末考试能不能过嘛。我平时没听过课,作业也都是抄的,临近期末的时候就很慌,然后看老师的ppt几天就看了一章,一度想要放弃,不过很庆幸后来找到了好方法,先声明这真不是推销,我是真的这样经历的想分享出来,就是比如b站或者微信公众号有那种课程,4小时学完模拟电路,或者几小时了,反正我看的叫这个,里面12课时,一般都是付费的,不过都是精华,我觉得要是花点钱能突击过还是非常值得的吧。就是直接上题,通过题讲基本知识点。那天半夜我发现的,当晚就看了几章,第二天白天看了点,晚上又熬夜看到10/12,因为考试一般都侧重前几章,所以还比较放心,然后白天起来从头捋了一遍去考试了,过了,你要是需要视频的话可以加我网络云2020Vitamin,愿意做你的救命稻草
❷ 请问模拟滤波器的原理及设计是哪门科里的
是模拟电路设拍枣计里边的,基本上这些都与运放相关。如果想学习的话,有两本书推荐你去看下(都是国外的书):《运算放大器应御庆用技术手册》《实用模拟电路设计》其中后一本的作袭拆拆者是 Marc T.Thompson(美国)。
这两本书上都讲得挺详细。前一本讲得更好一些。
❸ 基于dsp的 f.i.r低通滤波器设计
题目:利用DSP的FIR滤波器设计
数字处理器(DSP)有很强的数据处理能力,它在高速数字信号处理领域有广泛的应用,例如数字滤波、音频处理、图像处理等。相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等。使用可编程的DSP芯片实现数字滤波可以通过修改滤波器的参数十分方便地改变滤波器的特性,下面主要说明利用TMS320VC54x DSP芯片设计实现FIR数字滤波器。
设计目的意义
一个实际的应用系统中,总存在各种干扰,所以在系统设计中,滤波器的好坏将直接影响系统的性能。使用DSP进行数字处理,可以对一个具有噪声和信号的混合信号源进行采样,再经过数字滤波,滤除噪声,就可以提取有用信号了。所以说,数字滤波器是DSP最基本的应用领域,熟悉基于DSP的数字滤波器能为DSP应用系统开发提供良好的基础。
技术指标
1、数字滤波器的频率参数主要有:①通带截频:为通带与过渡带的边界点,在该点信号增益下降到规定的下限。②阻带截频:为阻带与过渡带的边界点,在该点信号衰耗下降到规定的下限。③转折频率:为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,也常以fc作为通带或阻带截频。④当电路没有损耗时,固有频率:就是其谐振频率,复杂电路往往有多个固有频率。巧答行
2、增益与衰耗
滤波器在通带内的增益并非常数。①对低通滤波器通带增益,一般指ω=0时的增益;高通指ω→∞时的增益;带通则指中心频率处的增益。②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。③通带增益变化量指通带内各点增益的最大变化量,如果通带增益变化量以dB为单位,则指增益dB值的变化量。
3、阻尼系数与品质因数
阻尼系数α是表征滤波器对角频率为ω0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标,它是与传递函数的极点实部大小相关的一项系数。
4、灵敏度
滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。
5、群时延函数
在滤波器设计中,常用群时延函数评价信号经滤波后孝哗相位失真程度。
以上的几个技术指标是一般滤波器的特性,但在实际应用中,数字滤波器通常用来实现选频操作,因此在利用DSP实现数字滤波器设计中要求的技术指标主要为在频域中给出的幅频响应和相频响应。如下图所示
幅频响应和相频响应特性曲线
对于幅频响应,它的含义是信号通过系统之后的输出信号的幅度与它输入时的信号的幅度的比值,一般以分贝值表示。对于相频响应,含义是信号通过系统之后的输出信号的相位与它输入时的信举谈号的相位之差,在运用线性相频响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;③可以采用FFT算法,从而提高运行效率;④由于FIR滤波器的单位脉冲响应是有限长序列,故FIR滤波器没有不稳定的问题,且误差较小。
基本原理
利用DSP实现FIR滤波器的设计方法主要有窗函数法和频率抽样法,其中窗函数法是基本的设计方法,这里采用窗函数法设计FIR滤波器。设希望得到的滤波器理想响应为 ,那么FIR滤波器的设计就在于寻找一个传递函数
去逼进 ,设
这里 就是傅立叶级数的系数。在这种逼近中,最直接的一种方法就是从单位脉冲响应 入手,使 逼近理想的单位脉冲响应 。由于 是一个无限长序列,因此,最简单的方法就是对 做截尾处理,即得到一个近似的传递函数
上式中,Q就是最终确定FIR滤波器的阶数,Q越大,近似程度就越高。对 截尾,实际上就是对 乘上一个矩形窗口 ,即
令z= ,则
其脉冲响应系数为 , ,…, , , ,…, , 。为使 具有因果性,延时Q个样值,可得:
令n+Q=k,上式成为
令 ,N=2Q,得
式中, 是脉冲响应系数,这里 …, ,…, 。
一般来说,FIR数字滤波器输出 的Z变换形式 与输入 的Z变换形式之间的关系如下:
实现结构如下图所示:
Z变换结构图
从上面的Z变换和结构图可以很容易得出FIR滤波器的差分方程表示形式,即对上式进行反Z变换得:
上式为FIR数字滤波器的时域表示方法,其中x(n)是在时间n的滤波器的输入抽样值,根据上式即可对滤波器进行设计。
硬件设计
1、DSP芯片
根据设计原理,实现的核心器件采用美国德州仪器公司生产的低功耗定点数字信号处理器芯片TMS320C5402。选择该芯片主要是因为它是目前最常用的低成本DSP芯片,而且包括以下主要特点:
⑴运算速度快,最快可达532MIPS;
⑵多总线结构,片内共有8 条总线(1条程序存储器总线、3条数据存储总线和4条地址总线);
⑶CPU采用冯? 诺依曼并行结构设计,使其能在一条指令周期内,高速地完成多项算术运算;
⑷片内集成了4K×16bitROM和16K×16bit的双存取RAM;
⑸丰富的片上外围电路(通用I/O 引脚,定时器,时钟发生器, HPI 接口,多通道缓冲串行口McBSP)使其与外部接口方便;
⑹3.3V I/O电压,1.8V核点压,工作电流平均值为75mA,其中核45mA,I/O约30mA;
⑺144脚BGA封装,使体积减少,功耗降低。
2、AD和DA电路
在本数字滤波器系统中选择了TI公司的TLV1570芯片作为模数转换器件,8通道10位2.7到5.5 V低电压模数转换芯片。TLVl570在3V电压下的采样频率为625KSPS,输入信号最高频率不能超过300K。
由于模数转换选择了10位器件,为了简化程序代码,减少DSP 的运算工作量,在本数字滤波器系统中选择了TI公司的TLV5608芯片,它是一款8通道10位2.7到5.5V低电压数模转换芯片。
3、电源电路
根据DSP芯片工作的电压电流需求,及芯片采用双电源供电对加电顺序的要求,考虑使用TI公司的电源转换芯片TPS73HD318,其输出电压为一路3.3V、一路1.8V,每路电源的最大输出电流为750mA,能满足本系统的供电需求。而且TPS73xx具有非常低的静态电流,能使稳压器输出稳定。
4、时钟电路
C54xx系列的时钟端子为X1和X2/CLKIN,采用无源晶振提供时钟信号,由于DSP有一组端子可以用来调整其工作频率的高低,故对晶振频率大小的选定没有特别的要求,这里选用10Mhz的晶振。
5、复位电路
为了克服DSP系统因时钟频率较高导致在运行时可能发生的干扰和被干扰的现象,最好是使用具有监视(Watchdog)功能的自动复位电路,于是采用专门的自动复位芯片MAX706。MAX706的电源为3.1V~5.0V,低电平复位输出,复位门限为3.08V。
6、未用端子处理
根据使用DSP芯片的相关原则,以及芯片手册具体决定未用端子是接上拉电阻还是悬空。
7、基于上述的各部分电路组成,可以得出DSP数字滤波器的整体硬件电路连线图,如下所示
程序设计
1、设计思路
⑴在DSP进行数字滤波运算前首先要进行初始化,只有正确设置了DSP的初始状态才能保证芯片能正常运行。本系统主要进行以下两方面的初始化:
①寄存器初始化:状态寄存器ST0、状态寄存器ST1、处理器模式控制寄存器PMST、软件等待状态寄存器SWWSR、组交换控制寄存器BSCR和时钟模式寄存器等。
②中断矢量表初始化:根据DSP芯片对各中断矢量的设置位置编写一个子程序;设置PMST控制寄存器;连接时将矢量表重定位到IPTR指定的地址。
⑵其次就是FIR 数字滤波的子程序设计,主要步骤如下:
①查询SPCR11寄存器的第二位,当为1时说明read ready,将DRR11的值读入AR3所指向的地址,该值为最新的采样值。
②将最新的采样值减去200h,然后AR3的值减1。
③执行MAC指令。
④将累加器的值送给变量Y,并将Y加上200h。
⑤查询SPCR20寄存器的第二位,当为1时说明writeready,将Y值赋给DXR10,该值为滤波器输出值。
⑥循环执行上面步骤。
2、程序流程图
依据上述程序设计思路可以得到利用DSP实现FIR滤波器设计的程序流程图,如下
3、程序代码
由于初始化程序部分过于庞大繁杂,这里只给出用MAC指令编程实现FIR低通滤波器的程序片断:
FILT_task1
LD Store_SICX,A
STLM A,ar4
STM #1,ar0 ;间址
STM #28,bk
LD DEM_Out,A
STL A,*ar4+% ;输入信号:实部
STM #Coef_Tab1,ar5 ;滤波器实部系数地址
LD #0,A
STM #27,brc
RPTB SICXU-1
MAC *AR4+0%,*AR5+,A
SICXU LD A,-16,A ;低通滤波结果
LD C7FFF,B
MIN A
NEG B
MAX A
STL A,DEM_Out
LDM AR4,A
STL A,Store_SICX
RET
Coef_Tab1
.word 100 ;h(0)
.word 7 ;h(1)
… ;脉冲响应系数
.word -248
.word -71 ;h(N-1)
.end
总结
通过利用DSP的FIR滤波器设计,对DSP芯片的使用,以及利用DSP芯片组成的基本系统的相关电路有了比较深的认识。熟悉DSP芯片的系统设计和应用开发流程,并利用图书馆、网络、询问同学等方式查找资料和解决相关的难题,这是最基础的工作,也是最关键的步骤。这样做可以培养自己的动手解决问题的能力和独立思考的处事方法,使自己具有技术人员的气质和工作态度,为将来的就业增加优势。
数字滤波器是DSP的典型应用,学会了有助于触类旁通,利于进一步的学习研究,能做到理解其他基于DSP的系统的功能和工作原理。掌握了基于DSP的应用开发,开阔了视野,增长了知识,是进入现代数字信号处理领域重要技能,乃至大规模集成电路的开发也是会用到的基础,今后要予以重视并积极努力去学习。
❹ CAD技术在电子封装中的有哪些应用
一些软件公司为此开发了专门的封装CAD软件,有实力的微电子制造商也在大学的协助下或独立开发了封装CAD系统。如1991年University of Utah在IBM公司赞助下为进行电子封装设计开发了一个连接着目标CAD软件包和相关数据库的知识库系统。电性能分析包括串扰分析、ΔI噪声、电源分配和S-参数分析等。通过分别计算每个参数可使设计者隔离出问题的起源并独立对每个设计参数求解。每一个部分都有一个独立的软件包或者一套设计规则来分析其参数。可布线性分析用来预测布线能力、使互连长度最小化、减少高频耦合、降低成本并提高可靠性;热性能分析程序用来模拟稳态下传热的情况;力学性能分析用来处理封装件在不同温度下的力学行为;最后由一个知识库系统外壳将上述分析工具和相关的数据库连接成一个一体化的系统。它为用户提供了一个友好的设计界面,它的规则编辑功能还能不断地发展和修改专家系统的知识库,使系统具有推理能力。
NEC公司开发了LSI封装设计的CAD/CAM系统——INCASE,它提供了LSI封装设计者和LSI芯片设计者一体化的设计环境。封装设计者能够利用INCASE系统有效地设计封装,芯片设计者能够通过网络从已储存封装设计者设计的数据库中寻找最佳封装的数据,并能确定哪种封装最适合于他的芯片。当他找不到满足要求的封装时,需要为此开发新的封装,并通过系统把必要的数据送达封装设计者。该系统已用于开发ASIC上,可以为同样的芯片准备不同的封装。利用该系统可以有效地改善设计流程,减少交货时间。
University of Arizona开发了VLSI互连和封装设计自动化的一体化系统PDSE(Packaging Design Support Environment),可以对微电子封装结构进行分析和设计。PDSE提供了某些热点研究领域的工作平台,包括互连和封装形式以及电、热、电-机械方面的仿真,CAD框架的开发和性能、可制造性、可靠性等。
Pennsylvania State University开发了电子封装的交互式多学科分析、设计和优化(MDA&O)软件,可以分析、反向设计和优化二维流体流动、热传导、静电学、磁流体动力学、电流体动力学和弹性力学,同时考虑流体流动、热传导、弹性应力和变形。
Intel公司开发了可以在一个CAD工具中对封装进行力学、电学和热学分析的软件——封装设计顾问(Package Design Advisor),可以使硅器件设计者把封装的选择作为他的产品设计流程的一部分,模拟芯片设计对封装的影响,以及封装对芯片设计的影响。该软件用户界面不需要输入详细的几何数据,只要有芯片的规范,如芯片尺寸、大概功率、I/0数等就可在Windows环境下运行。其主要的模块是:力学、电学和热学分析,电学模拟发生,封装规范和焊盘版图设计指导。力学模块是选择和检查为不同种类封装和组装要求所允许的最大和最小芯片尺寸,热学模块是计算θja和叭,并使用户在一个具体用途中(散热片尺寸,空气流速等)对封装的冷却系统进行配置,电学分析模块是根据用户输入的缓冲层和母线计算中间和四周所需要的电源和接地引脚数,电学模拟部分产生封装和用户指定的要在电路仿真中使用的传输线模型(微带线,带状线等)的概图。
LSI Logic公司认为VLSI的出现使互连和封装结构变得更复杂,对应用模拟和仿真技术发展分析和设计的CAD工具需求更为迫切。为了有效地管理设计数据和涉及电子封装模拟和仿真的CAD工具,他们提出了一个提供三个层面服务的计算机辅助设计框架。框架的第一层支持CAD工具的一体化和仿真的管理,该层为仿真环境提供了一个通用的图形用户界面;第二层的重点放在设计数据的描述和管理,在这一层提供了一个面向对象的接口来发展设计资源和包装CAD工具;框架的第三层是在系统层面上强调对多芯片系统的模拟和仿真。
Tanner Research公司认为高带宽数字、混合信号和RF系统需要用新方法对IC和高性能封装进行设计,应该在设计的初期就考虑基板和互连的性能。芯片及其封装的系统层面优化要求设计者对芯片和封装有一个同步的系统层面的想法,而这就需要同步进入芯片和封装的系统层面优化要求设计者对芯片和封装有一个同步的系统层面想法,而这就需要同步进入芯片封装的设计数据库,同步完成IC和封装的版图设计,同步仿真和分析,同步分离寄生参数,同步验证以保证制造成功。除非芯片及其封装的版图设计、仿真和验证的工具是一体化的,否则同步的设计需要就可能延长该系统的设计周期。Tanner MCM Pro实体设计环境能够用来设计IC和MCM系统。
Samsung公司考虑到微电子封装的热性能完全取决于所用材料的性能、几何参数和工作环境,而它们之间的关系非常复杂且是非线性的,由于包括了大量可变的参数,仿真也是耗时的,故开发了一种可更新的系统预测封装热性能。该系统使用的神经网络能够通过训练建立一个相当复杂的非线性模型,在封装开发中对于大量的可变参数不需要进一步的仿真或试验就能快速给出准确的结果,提供了快速、准确选择和设计微电子封装的指南。与仿真的结果相比,误差在1%以内,因此会成为一种既经济又有效率的技术。
Motorola公司认为对一个给定的IC,封装的设计要在封装的尺寸、I/0的布局、电性能与热性能、费用之间平衡。一个CSP的设计对某些用途是理想的,但对另一些是不好的,需要早期分析工具给出对任何用途的选择和设计都是最好的封装技术信息,因此开发了芯片尺寸封装设计与评价系统(CSPDES)。用户提供IC的信息,再从系统可能的CSP中选择一种,并选择互连的方式。
系统就会提供用户使用条件下的电性能与热性能,也可以选择另一种,并选择互连的方式。系统就会提供用户使用条件下的电性能与热性能,也可以选择另外一种,以在这些方面之间达到最好的平衡。当分析结束后,系统出口就会接通实际设计的CAD工具,完成封装的设计过程。
2.4 高度一体化、智能化和网络化阶段
从20世纪90年代末至今,芯片已发展到UL SI阶段,把裸芯片直接安装在基板上的直接芯片安装(DCA)技术已开始实用,微电子封装向系统级封装(SOP或SIP)发展,即将各类元器件、布线、介质以及各种通用比芯片和专用IC芯片甚至射频和光电器件都集成在一个电子封装系统里,这可以通过单级集成组件(SLIM)、三维(简称3D)封装技术(过去的电子封装系统都是限于xy平面二维电子封装)而实现,或者向晶圆级封装(WLP)技术发展。封装CAD技术也进入高度一体化、智能化和网络化的新时期。
新阶段的一体化概念不同于20世纪90年代初提出的一体化。此时的一体化已经不仅仅是将各种不同的CAD工具集成起来,而且还要将CAD与CAM(计算机辅助制造)、CAE(计算机辅助工程)、CAPP(计算机辅助工艺过程)、PDM(产品数据管理)、ERP(企业资源计划管理)等系统集成起来。这些系统如果相互独立,很难发挥企业的整体效益。系统集成的核心问题是数据的共享问题。系统必须保证数据有效、完整、惟一而且能及时更新。即使是CAD系统内部,各个部分共享数据也是一体化的核心问题。要解决这个问题,需要将数据格式标准化。目前有很多分析软件可以直接输入CAD的SAT格式数据。当前,数据共享问题仍然是研究的一个热点。
智能CAD是CAD发展的必然方向。智能设计(Intelligent Design)和基于知识库系统(Knowledge-basedSystem)的工程是出现在产品处理发展过程中的新趋势。数据库技术发展到数据仓库(Data Warehouse)又进一步发展到知识库(Knowledge Repository),从单纯的数据集到应用一定的规则从数据中进行知识的挖掘,再到让数据自身具有自我学习、积累能力,这是一个对数据处理、应用逐步深入的过程。正是由于数据库技术的发展,使得软件系统高度智能化成为可能。 二维平面设计方法已经无法满足新一代封装产品的设计要求,基于整体的三维设计CAD工具开始发展起来。超变量几何技术(Variational Geometry extended,VGX)开始应用于CAD中,使三维产品的设计更为直观和实时,从而使CAD软件更加易于使用,效率更高。虚拟现实(Virtual Reality,VR)技术也开始应用于CAD中,可以用来进行各类可视化模拟(如电性能、热性能分析等),用以验证设计的正确性和可行性。
网络技术的发展又给电子封装CAD的发展开创了新的空间。局域网和Intranet技术用于企业内部,基本上结束了单机应用的历史,也只有网络技术的发展才使得CAD与CAM、CAPP、PDM和ERP等系统实现一体化成为可能。互联网和电子商务的发展,将重要的商务系统与关键支持者(客户、雇员、供应商、分销商)连接起来。为配合电子商务的发展,CAD系统必须实现远程设计。目前国际上大多数企业的CAD系统基本能实现通过网络收集客户需求信息,并完成部分设计进程。
❺ 急求模拟电路课程设计
模拟电路课程设计
The Outline of Analog Circuits Course Project
一、 目的与任务
模拟电路课程设计是模拟电子技术课程重要的实践性教学环节,是对学生学习模拟电子技术的综合性训练,这种训练是通过学生独立进行某一个或两个课题的设计、安装和调试来完成的。
通过模拟电路课设要求学生:
1、 根据给定的技术指标,从稳定可靠、使用方便、高性能价格比出发来选择方案,运用所学过的各种电子器件和电子线路知识,设计出相应的功能电路。
2、 通过查阅手册和文献资料,培养学生独立分析问题和解决实际问题的能力。
3、 了解常用电子器件的类型和特性,并掌握合理选用的原则。
4、 学会电子电路的安装与调试技能,掌握电子电路的测试方法及了解印刷线路板的设计,制作方法。
5、 进一步熟悉电子仪器的使用方法。
6、 学会撰写课程设计总结报告。
7、 培养学生严肃认真的工作作风和严谨的科学态度。
二、 内容、要求与安排
1、内容:
课题名称:
(1) 多路输出直流稳压电源的设计与制作
(2) 波形产生电路的设计
(3) 高保真音频功率放大器的设计与制作计
(4) 函数信号发生器的设计与制作
(5) 水温控制系统的设计与制作
(6) 设计并制作音频频谱柱状显示器电路
2、要求:
在教师的指导下,学生要在规定的时间内完成课题的设计,安装和调试并独立完成总结报告。
3、进度安排及方式:(以四学时为一个单元)
第一单元:集中讲课,主要内容如下:
(1)课程设计的目的与要求
(2)课程设计的教学过程
(3)课程设计的评分标准
(4)课程设计题目介绍
(5)学生自由组合,选择题目。
第二单元:确定题目,教师就题目的基本要求答疑。学生讨论、查资料。
第三、四、五单元:查资料、设计、EDA仿真。
学生根据课题要求,独立完成课题的设计方案,并可以运用MULTISIM软件在微机上完成对所设计电路的仿真。
第六单元至第八单元:组装、调试、写报告。
第九单元:完成收尾工作,清点材料、工具。准备课设报告。
最后考试:分组答辩。
三、 场地与设备
1、 实验室场地:实验中心。
2、 实验所用设备:示波器、函数发生器、毫伏表、万用表(指针、数字)、直流稳压电源、实验箱。
四、 考核内容与成绩评定
1、 考核内容:
(1) 设计能力
(2) 组装或焊接调试情况
(3) 解决问题的能力
(4) 总结报告情况
(5) 出勤情况、工作作风和科学态度。
2、 成绩评定:
设计的正确性、合理性和EDA仿真情况 20分,实际操作,调试、效果 40分,
总结报告 20分,口试 20分。
课题一 多路输出直流稳压电源的设计与制作
一、设计目的
1、学习直流稳压电源的设计方法;
2、学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源;
3、掌握直流稳压电源的主要性能参数及其测试方法;
二、要求完成的主要任务
(1)设计任务
根据技术要求和已知条件,完成对多路输出直流稳压电源的设计、装配与调试。
(2)设计要求
① 要求设计制作一个多路输出直流稳压电源,可将220V/50Hz交流电转换为多路直流稳压电源
输出:±5V/1A,一组可调正电压+3~+18V/1A。
② 选择电路方案,完成对确定方案电路的设计。计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。(选做:用PSPICE或EWB软件完成仿真)
③ 安装调试并按规定格式写出课程设计报告书。
初始条件:
可选元件:变压器/15W/±12V;整流二极管或整流桥若干,电容、电阻、电位器若干;根据
需要选择若干三端集成稳压器;交流电源220V,或自备元器件。
可用仪器:示波器,万用表,
3、方案选择与论证
直流稳压电源总体功能框图如图下1所示。
参考电路图:
变压器根据所需电流决定功率,可用220V输入、输出15V/1A左右的。如没有合适的找个12V几瓦的也能用
课题二 波形产生电路的设计
一、设计目的
1、掌握波形发生电路的设计方法;
2、学会选择合适的器件来设计波形发生电路;
3、熟悉非正弦波产生电路调整与测试的基本方法;
4、提高应用集成运放的能力及独立进行电路设计的能力。
二、 设计要求和技术指标
1、技术指标:要求信号频率f=1 kHZ, VOm=0.2V.输出端不采用稳压二极管。
2、设计要求
(1)采用集成运放自己设计一个简单的方波产生电路,要求:f=1 kHZ, VOm=0.2V;
(2)要求绘出原理图,并用Protel画出印制板图;
(3)根据设计要求和技术指标设计好电路,选好元件及参数;
(4)拟定测试方案和设计步骤;
(5)撰写课程设计总结报告,要求有电路设计过程,调整测试内容、方法、步骤,测试记录及结果分析。
课题三 高保真音频功率放大器的设计与制作计
一、设计参数:
1. 采用全部或部分分立元件设计一种音频功率放大器。
2. 额定输出功率
3. 负载阻抗 。
4. 失真度
5. 设计放大器所需的直流稳压电源。
二、设计要求:
要求设计制作一个高保真音频功率放大器,输出功率10W/8Ω,频率响应20~20KHZ,
效率>60﹪,失真小。
三 设计方案图
音频放大器的目的是以要求的音量和功率水平在发声输出元件上重新产生真实、高效和低失真的输入音频信号。音频频率范围约为20 Hz~20 kHz,因此放大器必须在此频率范围内具有良好的频率响应。音频功率放大器的主要作用是向负载提供功率,要求输出功率尽可能大,效率尽可能高。非线性失真尽可能小。
输入级 ――→ 中间推动级 ―― → 输出级
负反馈线路 ← ―― 互补对称功放
课题四 函数信号发生器的设计与制作
一. 任务与要求
(1)要求能产生三角波、正弦波、方波;
(2)要求函数信号发生器能够实现频率可调
二. 设计目的
(1)学会用简单的电子元器件及芯片制作简单的函数信号发生电路,锻炼实际动手能力;
(2)学会调试电路与分析电路
三. 技术指标
要求设计制作一个方波——三角波——正弦波发生器,频率范围10~100HZ,100HZ~1KHZ,1 KHZ~10 KHZ;正弦波Upp≈3V,三角波Upp≈5V,方波Upp≈14V,幅度连续可调,线性失真小。
课题五 水温控制系统的设计与制作
一. 设计要求
(1)设计制作可以测量和控制的温度控制器
测量和控制的温度范围:10°—60°
精度:±1°
控制对象:继电器或晶闸管
继电器或晶闸管触电连接:一组转换接点为市电220V,10A
(2)选择电路方案,完成对确定电路方案的设计。计算电路元件参数与原件选择,画出原理图。
(3)进行安装和调试
二.设计任务
根据技术指标选择合适的温度传感器,选择合适的晶闸管或继电器,完成对水温控制系统的设计、装配和调试。
三.具体技术指标
室温~600C,控制精度± 10C,控制通道输出为双向晶闸管或继电器,一组转换接点为市电220V,10A。
课题六 设计并制作音频频谱柱状显示器电路
一、 设计任务
设计并制作音频频谱柱状显示器电路。示意图如下:
二、设计要求
(1)音乐输入:0~1.5Vrms;单声道。输入端采用莲花座和Q9座并联形式,莲花座用于音乐输入,Q9座用于测试。将柱状显示的LED集中布置于一个15cm×10cm的面板上。音频功放可使用现成有源功放,功率大于1W。
(2)制作5路带通滤波器,分别对应中心频率为:60Hz、250Hz、1kHz、4kHz、16k(1)Hz;滤波器Q值约为1.5。
(3)条状显示采用10个发光二极管显示电压高低,1~10个发光二极管点亮的阈值电压分别为:60mV、80mV、110 mV、160 mV、220 mV、320 mV、440 mV、630 mV、890 mV、1.25V,可用运放或专用集成电路制做。例如LM3915条状指示集成电路。
❻ 有关于数模的,怎么进行在线配置
数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,
通常称为D/A转换器或DAC(Digital Analog Converter)。
我们知道数分可为有权数和无权数,所谓有权数就是其每一位的数码有一个系数,如十进制数的45中的4表示为4×10,
而5为 5×1,即4的系数为10,而5的系数为1, 数模转换从某种意义上讲就是把二进制的数转换为十进制的数。
最原始的DAC电路由以下几部分构成:参考电压源、求和运算放大器、权产生电路网络、寄存器和时钟基准产生电路,
寄存器的作用是将输入的数字信号寄存在其输出端,当其进行转换时输入的电压变化不会引其输出的不稳定。
时钟基准产生电路主要对应参考电压源,它保证输入数字信号的相位特性在转换过程中不会混乱,
时钟基准的抖晃(jitter)会制造高频噪音。
二进制数据其权系数的产生,依靠的是电阻,CD格式是16bit,即16位。所以采用16只电阻,对应16位中的每一位。
参考电压源依次经过每个电阻的电流和输入数据每位的电流进行加权求和即可得出模拟信号。
这就是多比特DAC。 多比特与1比特的区别之处就是,多比特是通过内部精密的电阻网络进行电位比较,并最终转换为模拟信号,
好处在于高的动态跟随能力和高的动态范围,但是电阻的精度决定了多比特转换器的精度,要达到24bits的转换精度,对电阻的要求高达0.000015,
即便是理想的电阻,其热噪音形成的阻值波动都会大于此值,多比特系统目前广泛采用的是R-2R梯形电阻网络,对电阻的精度要求可以降低,但即便如此,
理想状态的电阻达到的转换精度也不会达到 24bits,23bits已经是极限多比特系统的优点在于设计简单,但受制于电阻的精度,成本也高
单比特的原理:依靠数学运算的方法在CD的脉冲代码信号(PCM)中插入过取样点,插入7个取样点就是18倍过取样,
这些插入的取样点与原信号通过积分电路进行比较,数值大的就定为1,数值小的就定为0,原先的PCM信号就变成了只有1和0的数据流,
1代表数据流较密集,0代表数据流较稀疏,这就是脉冲密度调制信号(PDM),脉冲密度调制信号经过一个开关电容网络构成的低通滤波器,
1 就转换为高电压信号,0就转换为低电压信号,然后通过级联积分,最终转换为模拟信号。
插入取样信号会制造出许多高频噪音,所以还要经过一个噪音整形电路处理,将这些噪音推移到人耳听不到的频域。
1bit的优点在于转换精度不受制于电阻,转换精度可以超过24bits,成本也低,但是设计过取样和噪音整形的电路难度很大。
因为电阻在精密程度(光刻)和热噪音(材料)上对音质影响相对小些,而1比特的电容和积分电路对音质影响则相对大些对于CD的数据格式,
单从声音素质上应该说多比特优于1比特,多比特对16比特的CD信号直接进行转换,而单比特还要经过一个PCM信号转换为PDM信号的程序,还要经过开关电容的充放电过程,
虽然从理论上来说,最终得到模拟信号的速度和多比特相比不会慢到可以比较的程度,
但是实际听感上,单比特不如多比特听起来更有活力,单比特似乎要慢一点,中频厚一点,音色比较浓郁。
1bit始创于飞利浦,分为三派,
一派是以飞利浦为代表的比特流Bitsream,
一派是以松下为代表的MASH,但是MASH的创始者是NTT公司,
还有一派就是今天非常流行的Delta-Sigma.
Bitsream采用最传统的 三阶或四阶噪音整形,MASH (Multi Stage Noise Shaping)就是多级噪音整形,
它将最初的量化值与原信号的误差保留下来,下一次量化时先将上次量化值与误差从原信号中减去,这样重复数次,
可以将二进制信号变换为脉冲宽度调制(PWM)的信号(PWM和PDM几乎一样)还可以将量化制造的噪音推到甚高频段,从而减少可闻频段的噪音。
但是似乎只有松下公司大量采用这种技术。现在MASH已经很少见了,但从理论上来说它是很优秀的。
1987年,飞利浦公司首次推出采用数字比特流技术(Bitsream)的单比特DAC芯片,它为高性能低价格CD唱机的出现奠定了坚实的基础。
1991年9月推出的DAC-7将比特流技术发挥到淋漓尽致的地步,同时还保持了合理的价格。音响史上有众多采用DAC-7的名机。
如飞利浦的LHH-900R,800R,300R,951。
马兰士的CD-72,CD-17,CD-23。
麦景图的MCD- 7007。
先锋的早年旗舰PD-T07。
meridian的602/603,
还有几乎所有欧洲数字音源厂家如 Rotel,Altis,Deltec,Revox,Studer等都在其旗舰系统中采用DAC-7。
进入21世纪之后,TDA1547依然锋芒未减,目前世界上最高级的SACD唱机——马兰士的SA-1仍然采用DAC-7,令世人不得不对DAC-7再次侧目。
迄今为止,DAC-7仍然是飞利浦最高级的比特流DAC芯片。
在飞利浦的产品手册里,是这样评价DAC-7的;拥有顶级性能的双声道数字比特流DAC芯片,
1Bit数字模拟转换器专用,使用DAC-7可以轻而一举获得高保真的数字音频再生。
DAC-7非常适合用于要求高质量的CD和DAT播放器,或者用于数字放大器和数字信号处理系统之中。这样的评价非常中肯。
DAC-7包括TDA1547和SAA7350 ,因为过取样和噪音整形电路制造出的大量高频数字信号会对TDA1547中的模拟电路造成干扰和调制。
所以将配合TDA1547的三阶噪音整形和24倍过取样电路单独设计于SAA7350之中。这也是TDA1547成功的最关键之处。
现在飞利浦又对SAA7350加以全面改进,将数字滤波器也集成进来,新型号定为TDA1307,仍然是专门配合TDA1547的芯片。
不过TDA1547和TDA1307合起来叫DF7。
TDA1547采用了双极组合型金属氧化物半导体工艺。在数字逻辑电路方面,采用最佳的时钟频率,可以减少数字噪音的产生。
在模拟电路方面采用双极型晶体管,可以使运算放大器获得较高的性能。
在电源供应方面,TDA1547费尽心机,首先是模拟电路与数字电路分开供电,
在数字电路里面,高电平逻辑电路与低电平逻辑电路分开供电,并且都是左右声道独立供电。
内部总体结构方面,TDA1547采用双单声道设计,彻底分离,输出也是左右声道独立输出。
TDA1307可以接收16、18、20bits格式的信号,输出音频格式32bits。
内置接收界面,去加重滤波器,采用8倍过取样有限脉冲响应(FIR)滤波器,3阶或4阶可选型噪音整形电路。
标准型芯片信噪比达致当今最高的142dB,动态范围高达137dB。
马兰士的SA-1将DAC-7最完美的运用,它采用四片TDA1547和TDA1307构成全平衡电路。
模拟放大部分采用马兰士高级机型里大量使用的HDMA。
今天Delta-sigma 1bit非常流行,它包括两部分电路,一部分是Delta电路,它将量化后的信号与初始信号进行比较求差,这些插值信号接下来进入Sigma电路,
此电路将这些插值信号进行误差求和,然后与量化前的信号相迭加。然后再进行量化。
通常采用飞利浦开发的动态元素配对(DEM)量化技术,此种量化包含一个极高精度的电流源和多个1/2镜像电流源,由于集成电路最擅长镜像电流源电路,
所以对元器件精度的要求可以降低,提高了性价比。
量化以后的信号通过开关电容网络转换为模拟信号。
需要指出并非所有的Delta- sigma 转换都是单比特。Delta-sigma的优势在于它的高性价比,从而在中低档数字音源市场上非常流行。
即便是那些坚持采用多比特的厂家,中低价位也得采用Delta-sigma。
坚持使用Delta-sigma的恐怕非Crystal莫属,CRYSTAL的cs4390,4396在业界也有大量使用,
其中也不乏极品如mbl1611hr,
还有发烧天书A级的Meridian 506.20 、
Meridian 508.24、 Meridian 506.24
还有国内新德克的 DAC-1 。
CS4390于1998年6月发售,是CRYSTAL第一块Delta-sigma DAC芯片。
它是一块完整的立体声DAC解码芯片,信号先进入128倍内插值电路,然后经过128倍过取样Delta-sigma数模变化,
接着输出模拟信号和经过调制的基准电压, 最后进入一个超级线性的模拟低通滤波器。
其中Delta-sigma数模变换部分还没有采用飞利浦的DEM技术。
CS4390的信噪比为115dB,动态范围是106dB,总谐波失真加噪音为—98dB,转换精度为24bits,对时基抖晃敏感程度较低。
其后又在CS4390的基础上增加了音量控制,改名为CS4391。
一年以后的1999年7月,CRYSTAL推出CS4390的升级产品——CS4396,CS4396与CS4390最大区别之处就是采用了DEM技术,
CS4396也是一块完整的立体声DAC芯片,信号在经过内插值和Delta-sigma变换后,进入DEM程序块,然后通过开关电容网络,最后通过模拟低通滤波器,
输出级采用了高音质的差分电路。DEM的采用使CS4396的失真和噪音都有所降低,达到了—100dB,动态范围也提高到120dB,
转换精度还是24bits,最高取样频率升至192KHz,但是不在提供信噪比的参数。
同时推出的CS4397是在CS4396的基础上支持外接PCM(对应DVD-AUDIO)和DSD(对应SACD)内插式滤波器。
半年多以后,CRYSTAL公司又推出CS4396的升级产品——CS43122,
与CS4396不同之处一个是采用了第二代的DEM技术,
另一个是 Delta-sigma调制器不再采用1bit而采用了5bits三阶调制。
对于内插值电路也加以改进,达到了102dB的阻带衰减性能。CS43122与CS4396的性能参数基本一样,只有动态范围达到了122dB,这也是目前动态范围最高的DAC芯片。
2000年9月20日,CRYSTAL公司又推出CS4392,一款对应 DVD-AUDIO和SACD的DAC芯片,动态范围有114dB,总谐波失真加噪音为—100dB,
但是只OEM,暂不流通销售,每片售价仅2.8美元。
(注意CRYSTAL从头到尾都不在提信噪比,因为它的信噪比只有CS4390 达到了115dB)
日本的NPC公司同样以Sigma-Delta变换技术闻名于世,我们对NPC的高性能数字滤波器一定很熟,最出名的SM5842,乃是公认的极品。
同样 SM5865则是Sigma-Delta 极品解码芯片,虽然不为人知,但是在不久的将来,SM5865也会被公认为极品。
SM5865是今年2月份推出的,首先它是单声道芯片,内部是真真正正的全平衡电路,信号先经过插值电路,然后进入三阶多比特Sigma-Delta变换程序,
接着经过31级DEM量化,最后经过开关电容网络变为模拟信号,
SM5865的DEM量化级数极高且非常成功,从而使得量化导致的可闻频域噪音可以完全忽略,所以最后一级的模拟低通滤波可以省掉,从而得到理想状态的失真程度和噪音量。
SM5865是目前世界上失真最低噪音最小的DAC芯片,总谐波失真加噪音只有0.0003%,即— 110.5dB。
同时仍然做到了120dB的信噪比和117dB的动态范围,接受数据格式在20-24bits之间,最高取样频率也是192KHz,从而顺利登上今日DAC之王的宝座。
多比特DAC分为两大名家,一是UltraAnalog公司,另一个就是Burr-Brown公司。
大多数人对UltraAnalog可能会比较陌生,因为它在1998年12月被Wadia收购了,从此再也没有它的消息。但是它在DAC历史上的地位远非Burr-Brown可比,
使用 UltraAnalogDAC芯片有汇点(Conterpoint)的旗舰解码器 DA-10,
宝丽音Parasound的旗舰解码器 D/Ac-2000,
Mark Levinson的早年旗舰解码器 NO.30和 N0.30.5
还有日本静电耳机名厂Stax的起见解码器 DAC-x1,
KinergetICs 的高级解码器 kcd-55
而Manleylab、 Sonic Forntiers、Camelot、Entech、Aragon、Audio Synthesis 的旗舰解码器都采用UltraAnalog的芯片。
基本上采用UltraAnalog芯片的解码器都会是发烧天书的A级品。并且几乎1998年以前所有的美国顶级解码器都采用的是UltraAnalog的芯片。
虽然UltraAnalog的产品很好但是利润低,因为UltraAnalog只有这一种产品,对集成电路生产厂家来说这样根本无法维持下去,UltraAnalog 可以活到1998年就已经不错了,
Wadia将其收购以后,没有将UltraAnalog的技术资源吸收并转化。同时Wadia也认为 UltraAnalog是个包袱,渐渐地UltraAnalog香消玉陨了,
今天仍有UltraAnalog的死终派如 Manleylab、 Sonic Forntiers、Camelot、Entech、Aragon、Audio Synthesis仍坚持采用UltraAnalog的芯片,
可能库存还不少,Sonic Forntiers 还和UltraAnalog有合作关系。可能也生产UltraAnalog的芯片。
UltraAnalog公司是世界上第一家对时基抖晃加以仔细研究的厂家,同时UltraAnalog的产品时基抖晃也是世界最低,
UltraAnalog还提出一种可以大幅减少时基抖晃的数字音频信号接口界面。
1993年 UltraAnalog还发明了非常廉价的时基抖晃分析仪。
UltraAnalog的芯片主要是D20040,我们对其知之甚少,只知道是20bits的转换精度,内部是两个19bits的DAC并联而成。其他就不知道了。
相信再过10年,还有谁知道UltraAnalog?技术和商业绝对不是一会事。
Burr-Brown在今天的DAC芯片市场上份额甚大,声誉颇隆。Burr-Brown成立于1993年,和UltraAnalog一样是多比特的死终派,
建厂伊始推出PCM58,PCM63,也是好评如潮,但仍无法与UltraAnalog匹敌。
1995年推出PCM1702终于可以于 UltraAnalog一争高下,直到今天采用PCM1702的高级CD机也不在少数,
Linn在2000推出的Sondek CD机采用PCM1702售价高达20000美元,发烧天书评为A级。这之后沉寂4年,
1999年2月,推出多比特DAC的终极产品PCM1704。此时UltraAnalog已经被Wadia收购,渐渐式微。Burr- Brown也被TI(德州仪器)公司收购,
依托TI的强大实力,Burr-Brown得到了良好的发展,成为今日DAC芯片市场上的龙头老大。
PCM1702推出于1995年6月,当时市场上1bit声誉甚隆,Burr-Brown对1bit提出挑战,
Burr-Brown指出1bit插入取样点的做法会导致许多高频噪音的产生虽然这些噪音的频率比较高,但是仍有可能对可闻频域造成调制,
并且这些人为制造的噪音还需要噪音滤波器来消除,滤波器的加入对信噪比的衰减较大,低电平时响应也不够好而Burr-Brown认为信噪比这个特性几乎是最重要的特性。
多比特的唯一缺点就是过零失真,PCM1702采用了信号数值型(sign magnitude)结构完美解决了这一问题,
在1702内部互补并联了一对DAC,并联的好处一是提高了信噪比,二是提高了转换精度,1702内部并联了两个19bits的DAC,转换精度就是20bits。
这两个DAC共用一个参考电压,共用一个R-2R梯形电阻网络,梯形电阻网络的位电流源由双平衡电流级供应,确保位电流源具备完美的跟踪特性。
每个DAC内部都采用激光微调的钼铬电阻,确保高精度,两个DAC经过精确微调确保相位一致。最终两个 DAC的正负半周转换完美解决了过零失真。
而传统的R-2R形电阻数模转换则取得了高信噪比和低失真,还有近乎理想的低电平表现和高电流输出能力。
PCM1702的信噪比为120dB,这个数值直到现在也没有谁能打破,在当时更使人难以想象。1702的总谐波失真加噪音为—96dB,在当时也是非常好的特性。
PCM1704推出于1999年2月,是多比特DAC的终极产品,恐怕再也不会有多比特DAC超过它,
Burr-Brown用它最擅长的电阻制造工艺制造出了达致理想精度的电阻,从而得到了世界上最高精度的多比特DAC,高达23bits。两个并联之后达到24bits。
至于内部结构与PCM1702基本上没有差别。
1704的信噪比还是120dB,动态范围112dB(K级),总谐波失真加噪音为-101dB(K级)。
至1704后到现在,Burr-Brown再也没有推出比1704更高等级的多比特DAC,Burr-Brown也无法打破自己创造的记录,
2001年4 月30日,Burr-Brown推出新一代的顶级DAC—PCM1738,采用了先进层次结构型DAC,Burr-Brown也知道传统的多比特走到了尽头。
先进层次型结构先用一个24bits,八倍取样频率下工作的数字内插值滤波器对数字信号进行分流,分为上6bits信号,下18bits信号。
上6bits信号进行反向互补位移型二进制译码,转换为62级数字信号,下18bits信号则进行三阶15级Delta-sigma调制,
调制频率是取样频率的64倍,最终转换为4级数字信号,
然后两者相加为66级数字信号,再加上1级LSB信号,总共67级数字信号,
这67级数字信号然后通过数据加权平均(DWA)程序,以减少模拟元件不配对引起的噪音,
实际上DWA就是第二代的DEM。经过DWA处理后,最后进入电流型数模转换器,将二进制脉冲信号变为脉冲电流信号,
再由芯片外的运算放大器进行电流电压转换,并最终取得模拟信号。应该说这种DAC不是单比特也不是多比特,应该叫它电流脉冲型DAC。
PCM1738的信噪比和动态范围都是117dB,总谐波失真加噪音为-108dB,应该说胜过PCM1704,但它的价格远低于PCM1704(K级)的25美元,只要5美元。
Analog Device公司也非常擅长制作极品级的DAC芯片,象金嗓子从来都是只用Analog Device的芯片,
在DAC芯片的理论设计上,Analog Device拥有至高无上的地位,Analog Device早在1998年就发明了多比特Delta-sigma调制,
因为传统的单比特Delta-sigma调制,导致离散到连续的边界每步尺寸过大,从而对主时钟的稳定程度要求极高,
例如要想在可闻频域内达到100dB以上的信噪比,那么主时钟的时基抖晃不能大于10PS,可这是不可能的,所以高信噪比的取得必须放弃单比特Delta-sigma调制。
多比特Delta-sigma调制的缺点是不方便采用DWA程序,模拟元件引起的噪音无法避免,
如果采用DWA程序,那么要求输入信号的格式低于18bits,可是现在是24bits的天下。显然无法接受。
Analog Device另觅蹊径,采用了分段噪音整形技术解决了这一难题。而Burr-Brown则在一开始就将信号分流。
传统的单比特解码必须采用开关电容,并且大约每增加一比特的转换精度,电容就要增加四倍,
要知道每个电容都会制造噪音,并且大电容会对配合开关电容网络的运算放大器要求更高的转换速率,
所以采用开关电容网络的DAC芯片,高转换精度会造成一定限度的声音品质下降,如果设计不良,有可能越高的转换精度声音越差,听感上声音过于清丽以致声音单薄。
Analog Device采用电流脉冲型DAC,电流型DAC的脉冲电流输出上升与下降时间不平均,要采用一般的电压电流转换运算放大器会导致转换线性下降,对时基抖晃也很敏感,
Analog Device采用双回转零开关电路解决了。此技术是于SONY联合开发的,最早用于SONY的顶级ES系列。
因为电流脉冲型采用一个异常纯净的瞬间电流源,电流脉冲不会再有任何波纹,几乎可以等同于完美的方波。音质会非常纯净。
自1999年以后,Analog Device发现音响市场萎缩,于是转而对SHARC型通用DSP芯片的开发与研究,没有再对DAC作进一步的研究,
尽管如此,Analog Device在1998年推出的DAC芯片AD1853,仍旧是目前最高级的DAC芯片,丝毫不比PCM1738或SM5865差,虽然这些芯片都是 2001推出的,
但无论在性能还是技术上,AD1853都不差。
并且AD1853还是世界上第一块取样频率为192KHz的DAC芯片,它还是世界上对时基抖晃敏感程度最低的DAC芯片,
它的信噪比为120dB,动态范围是117dB,总谐波失真加噪音为—107dB,和SM5865相比应该说旗鼓相当,不分高下。
对于目前新兴的音频格式的DAC芯片也应该有所了解。
DVD-AUDIO格式仍然使用PCM编码,所以DVD-AUDIO的DAC解码芯片与CD的解码芯片原理相同,
只是要求更高的转换精度和取样频率以及输入格式宽度。
SACD就不同了,它在录制的时候,将输入的模拟信号经过Delta-sigma调制变为单比特取样频率为2822.4kHz的二进制数字信号,
并且这时的数字信号已经是脉冲密度调制信号(PDM),所以在进行单比特解码时不必再加取样点和噪音整形电路,
只要通过开关电容网络和模拟低通滤波器,就可以得到模拟信号。
所以电路非常简单,并且在数模转换级没有任何数字运算电路更没有时钟基准产生电路,也就不会有任何数字噪音的混入,声音的纯净度极高。
SONY的SACD机没有采用开关电容网络,而是采用了最高等级的电流脉冲型数模转换。
顺便提一下,CD信号也是先将输入的模拟信号经过Delta-sigma调制变为16比特取样频率为44.1kHz的二进制信号,然后还得经过一个数字抽选滤波器,
任何数字滤波器都会制造无法忽略的噪音,还有通频带内纹波和铃振的现象,降低了声音的纯度。
SACD无论是录制还是重放系统中都没有一个数字滤波器,而CD不仅在录制时还是在重放时都有,单比特系统还要再加一个内插取样点滤波器。
音质的纯度根本无法与SACD相比,SACD是现阶段声音纯度最高的记录媒体和重放系统,最接近与真实的声音。
目前世界上有三片SACD用的DAC芯片,
一是SONY的SACD机上用的DSD1700,由Burr-Brown公司制造。
二是NPC公司的 SM5866,
三是CRYSTAL的CS4392,但没有公开发售。
由于SACD考虑到要有现阶段最优秀的声音表现,所以一般都采用电流脉冲型数模转换电路,
这种电路一般都用分离元件构成,故DSD1700和SM5866 内部实际上主要就是模拟低通滤波器,
严格地说DSD1700和SM5866不是DAC芯片,而是模拟低通滤波器芯片。
DSD设计只能用于SACD系统,它的内部主要是四组模拟低通滤波器,分别是热端正向和反向滤波和冷端正向和反向滤波,
每组滤波器内部是8个三端无限脉冲响应滤波器。四组滤波器最终输出双差分电路。
DSD动态范围是110dB,信噪比是110dB,总谐波失真是—100dB,高频响应为100KHz(—3dB)。
NPC公司的SM5866推出于2000年9月22日,它可用于SACD和DVD-AUDIO系统。其内部资料没有公布。
它的信噪比为120dB,总谐波失真加噪音为—109dB,高频响应为100KHz(—1dB)。很明显要比DSD1700高一个级别。
❼ 高通滤波器波形失真原因
看了一下,觉得有点乱。你高通滤波,截止频率是多少你都不说,opa2228本身带宽就不高,设计的滤波器截止频率不能太高的。
你的波形幅值高低高低,那些是滤波后的,那些是输入波形说清楚啊。
最好能把你的设计电路贴出来,估计你的电路是由问题的。
因为不知道你设计的高通截止频率是多少,就你图上的现象,大概给你分析下。
我看了下数据手册。你的图一很粗,你就把信号拉开点,肯定可以看到耦合在信号上的其他信号(就是你图二看到耦合在信号上的那些小抖动),但是因为你的Vpp有3.6V,较大于这些耦合在信号里的噪声,所以信号看起来很粗。
这也是为什么你伍罩凳能在图二看到这些耦合噪声,因为你图二本身的信号就很小(解决办法,在运放供电闷仔两端加上去偶电容,模拟电路大部分噪声都是从电源耦合进来的)。
图三,我看了腔旅下opa2228的datasheet,你这个是压摆率不够,opa2228在500khz的频率下,最大输出振幅是3.5,你正好压线(解决办法,换压摆率高的运放)。
图四,信号饱和失真并且压摆率不够,估计和你设计的截止频率有关。
❽ 大神们,我要做一个模拟带通滤波器。要求是频率 范围20hz到20khz,无放大倍数。该怎么设计。
1、带宽很清晰:20k-20=19.98kHz,也就是20kHz了,这么大的相对带宽通常不计算中心频率,如果要计算,有腔没两种:一是算术伍模纳平均值码慎,一种是几何平均值,用几何平均值比较合理。
2、相对带宽小于1时,应采用带通滤波器,像你这样宽带的必须用高通、低通级联。
3、需要几阶以及哪种类型,是属于“设计要求”,没有什么“最好”,必须先明确提出这些要求才能开展设计。
4、建议下载电子书《有源滤波器的快速实用设计》或《有源滤波器精确设计手册》自己进行查找,恕不越俎代庖。