『壹』 温度开关电路原理
固体膨胀式 温度开关的工作原理
温度仪表对于不同的温度测量范围,应选用结构不同的温度开关,在0℃~100℃的温度范围内,通常采用固体膨胀式的温度开关,在100℃~250℃的温度范围内,大多采用气体膨胀式温度开关,对于250℃以上的温度范围,则只能采用热电偶或热电阻温度计,经过测量变送器转换为模拟量电信号,再将电信号转换为开关量信号。
固体膨胀式温度开关的工作原理是,利用不同固体受热后长度变化的差别而产生位移,从而使触点动作,输出温度的开关量信号。例如,有一种温度开关是用双金属片(黄铜片叠在铟钢片上)构成的,由于黄铜片的线膨胀系数较铟钢片大,在受热后,双金属片就会发生弯曲。当达到规定温度时双金属片自由端(温度开关的动触点〕产生足够的位移,与固定的静触点断开,送出开关量信号。温度仪表 气体膨胀式温度开关是按气体压力式温度计的原理工作的。它有一个测温包,内充氮气,通过密封毛细管接到压力开关的测量元件中。当被测温度达到规定值时,温包内的充气压力使压力开关动作
工作原理及控制过程
1.温度开关各部电路组成及元件作用
是KSW-3型温度自动控制器电气原理。三极管BGl、线圈L1、L2、L3和电容器C1、C2、C3、C5、C8等元件构成了高频电感三点式振荡电路。振荡信号经D1检波输出。BG2、R6和R7、继电器J等元件组成一级直流放大电路。交流接触器CJ则完成对高温电炉的电源控制。电源变压器B除给温度转换电路和红、绿指示灯提供交流低压外,还通过D3、D4整流输出12V直流电压作为振荡电路、放大电路的电源。电流表A串接在高温炉的电源上,与指示灯XD1、XD2共同显示高温炉的通电与断电。温度转换电路由热电偶R和R9~R13、C9组成。D5并接在热电偶两端,以防止热电偶断开时。因电流过大损坏仪表。另由振荡线圈L3和C8所组成的谐振回路与毫伏计构成指示控制部分。
2.温度开关工作原理及控制过程
接通电源,振荡器和放大器开始工作,振荡信号由BGl射极输出,经D1检波后使BG2导通,继电器J吸持,带动交流接触器CJ吸合,高温炉开始加温。炉膛内的温度经热电偶转变为电信号(电动势)传递给动圈式毫伏计,使其带有铝片的指针向右偏转。当指针进入振荡线圈L3的间隙时(预定温度).由于铝片上的高频涡流效应,使L3的总电感量大为减小,导致L3与C8的谐振回路对于振荡频率的电流阻抗增大。振荡幅度减小,甚至停振。这时通过D1检波后输给BG2的基极信号大为减弱,使BG2截止,继电器J的触点释放.交流接触器CJ随之开路.触点释放.切断高温炉电源,高温炉停止加温。待炉温逐渐下降,热电偶R的电动势也随之减弱,使毫伏计指针向左偏转。当指针退出振荡线圈L3的间隙时,电路又恢复振荡。BG2导通、J吸持,CJ的电源接通,触点吸合,高温炉又开始加温。如此反复动作,就使炉温维持在预定范围之内,实现温度自动控制。
『贰』 PPR热熔机(32型)电路接线图
PPR热熔机(32型)电路接线图:
PPR热熔器是一种用于加热对接PPR管的机器,有可调节温控和固定温控两种,其规格和管材规格一样,可调温控制热熔器可用于其他材料管材,如PE、PP等。
热熔机是由电加热方法将加热板热量传递给上下塑料加热件的熔接面,使其表面熔融,然后将加热板迅速退出,将上下两片加热件加热后熔融面熔合、固化、合为一体的仪器。
整机为框架形式,由上模板、下模板、热模板三大块板组成,并配有热模、上下塑料冷模,动作方式为气动控制及手动形式。主要适用于家用电器、车灯、汽车溶器等塑件焊接。
(2)加温器电路扩展阅读:
热熔器使用注意事项:
1、不要擅改插头,使用时必须把手插头插入有接地线插座上。
2、在使用过程中,手及易燃物不能触及电熔热块部份以免发生意外。
3、非专业人员产品不得打开,以防触电及破坏仪器的安全性能。
4、如红色指示灯长时间不出现跳变,说明仪器已出现故障,应立即停止工作,并切断电源。
5、如有故障应送各地经销处或生产厂家维修,用户不得随意拆卸。
6、如操作环境温度低于5℃,则加热时间延长50%。
7、熔接器出厂时温度已调整好,非专业人员不得随意调整,以免影响熔接器的正常使用及寿命。
『叁』 无人机的核心,飞控硬件到底都有啥
作为NAZA飞控系列的最新一代产品,N3多旋翼飞控系统采用DJI最新的控制导航算法,新增的内置版双IMU冗余设计,可实现数据实时互为备份,结合全新内减震结构设计,赋予飞行器高可靠性;“黑匣子”数据记录系统为飞权行性能分析提供精准数据支持,同时,对于包括 Lightbridge 2、DataLink Pro、 DJI Assistant 2等在内的一系列DJI配件、高性能软件、SDK和A3 Upgrade Kit高性能导航模块的支持,可帮助飞行器实现丰富的应用扩展,为无人机爱好者及行业应用探索者提供稳定而全面的系统级解决方案。