① 什么是PCB电路板的工艺要求呢
1 .PCB板在初焊完成后,应即统一编号(年号后两位+流水号)。用记号笔清晰地书写在板子正面的予留位置。为防止在加工、清洗过程中记号丢失,应在板子另外位置(一般应在96弯针侧面)再书写同一编号。为管理方便,此编号应永久保留。编号管理由库管员负责。
2.为避免和尽量减少元器件表面的磕碰划伤,在加工、运输、保管板子过程中,应注意轻拿轻放,板与板之间一般应隔离码放,或逆向(即面对面或背靠背)码放。
3.为防止静电效应,对可能接触有源器件的操作要求戴手套进行。如果现场确无条件,则必须采取安全措施,确保器件安全。
4.PCB板在测试通过后(即已具备上机条件),操作者应负责对整板进行后整理工作,内容包括:
(1)剪除过高的管脚,并注意清除干净板上的金属残留物。
(2)正面飞线应尽可能顺势隐蔽,背面飞线原则上应走捷径;焊点和较长的飞线须 用玻璃胶覆盖、固定,并尽可能少用胶。
(3)清除多余的标识(如调试过程中所做的故障现象记录须清除)。多余的器件应完全剪除。
(4)同一台装置所配后档板颜色应基本一致。螺丝、垫片、提梁应该完整和一致。检查各类螺丝,应当保持紧固。
(5)用毛刷和洗板液清洁表面,使板及板上物没有浮尘和明显污痕污物。如果用棉球沾液清除污物,还须注意清除掉残留的棉絮。
(6)焊盘残破的PCB板不得用于新机;但轻微损坏的,在采取工艺措施并确保质量安全的前提下,可酌情慎重地用于修理品。
5 .对返修装置的返修 PCB板处理原则同上。
6 .上述后整理工作除另有安排外,均由负责PCB板测试、修理的操作者承担,总装者有责任复查和补正后再装机。
② 鍗板埗鐢佃矾鏉跨殑瑕佹眰鏈夊摢浜涳紵
鍗板埗鐢佃矾鏉匡紙PCB锛夋槸鐢靛瓙浜у搧涓鐢佃矾鍏冧欢鍜屽櫒浠剁殑鏀鎾戜欢锛屽叾璁捐$洿鎺ュ奖鍝嶅埌鐢靛瓙浜у搧鐨勫彲闈犳с傚湪璁捐″嵃鍒剁數璺鏉挎椂锛岄渶瑕侀伒寰涓瀹氱殑瑕佹眰鍜屽師鍒欙紝鍚屾椂婊¤冻鎶楀共鎵拌捐$殑瑕佹眰銆備互涓嬫槸涓浜涘嵃鍒剁數璺鏉跨殑璁捐¤佹眰锛
1. 甯冨眬鍘熷垯锛氶伒寰鈥滃厛澶у悗灏忥紝鍏堥毦鍚庢槗鈥濈殑甯冪疆鍘熷垯銆傞噸瑕佺殑鍗曞厓鐢佃矾銆佹牳蹇冨厓鍣ㄤ欢搴斾紭鍏堝竷灞銆傚竷灞涓搴斿弬鑰冨師鐞嗘嗗浘锛屾牴鎹鍗曟澘鐨勪富淇″彿娴佸悜瑙勫緥瀹夋帓涓昏佸厓鍣ㄤ欢銆
2. 璁捐¢『搴忥細棣栧厛纭瀹氱數璺鏉跨殑灏哄稿ぇ灏忥紝浠ヤ究鑳芥伆濂藉畨鏀惧叆鏈虹卞栧3銆傚叾娆★紝鑰冭檻鐢佃矾鏉夸笌澶栨帴鍏冨櫒浠讹紙濡傜數浣嶅櫒銆佹彃鍙f垨鍙﹀栫殑鐢佃矾鏉匡級鐨勮繛鎺ユ柟寮忋
3. 绾胯矾璧板悜锛氬敖閲忓噺灏戣繃瀛旀暟閲忥紝蹇呰佹椂闇璁剧疆鍗板埗瀵肩嚎淇濇姢鐜鎴栦繚鎶ょ嚎锛屼互闃叉㈡尟鑽″拰鏀瑰杽鐢佃矾鎬ц兘銆
4. 闂磋窛鍜屽藉害锛氬悎鐞嗚剧疆鍏冨櫒浠朵箣闂寸殑闂磋窛锛屾弧瓒崇敓浜у拰缁翠慨鐨勯渶姹傘傚悓鏃讹紝閬靛惊涓瀹氱殑绾垮藉拰闂磋窛鏍囧噯锛屼互纭淇濅俊鍙蜂紶杈撶殑绋冲畾鎬у拰鍙闈犳с
5. 鎺ュ湴鍜屽睆钄斤細璁捐″悎鐞嗙殑鎺ュ湴甯冨眬锛岄檷浣庣數纾佸共鎵般傚繀瑕佹椂锛岄噰鐢ㄥ睆钄芥帾鏂芥潵鍑忓皬澶栭儴骞叉壈瀵圭數璺鐨勫奖鍝嶃
6. 鏁g儹璁捐★細鑰冭檻鐢佃矾鏉跨殑鏁g儹闇姹傦紝涓洪珮鍔熻楀厓浠惰剧疆鏁g儹璺寰勶紝浠ヤ繚璇佺數璺鏉跨殑绋冲畾宸ヤ綔銆
7. 鍙闈犳э細閬靛惊鎶楀共鎵拌捐¤佹眰锛屾彁楂樼數璺鏉垮湪鎭跺姡鐜澧冧笅鐨勫伐浣滅ǔ瀹氭с
8. 宸ヨ壓瑕佹眰锛氶伒寰鐩稿叧鐨勫伐鑹烘爣鍑嗭紝濡 IPC-ESD-2020锛堥潤鐢垫斁鐢垫帶鍒剁▼搴忓紑鍙戠殑鑱斿悎鏍囧噯锛夊拰 IPC-SA-61A锛堢剨鎺ュ悗鍗婃按鎴愭竻娲楁墜鍐岋級銆
9. 鏉愭枡閫夋嫨锛氭牴鎹鐢佃矾鎬ц兘瑕佹眰鍜岀幆澧冩潯浠讹紝閫夋嫨鍚堥傜殑鍗板埗鐢佃矾鏉挎潗鏂欙紝濡傛尃鎬ч摱娴嗗嵃鍒剁嚎璺鏉裤
10. 娴嬭瘯涓庨獙璇侊細鍦ㄨ捐″畬鎴愬悗锛岃繘琛屼弗鏍肩殑娴嬭瘯鍜岄獙璇侊紝纭淇濈數璺鏉挎弧瓒虫ц兘瑕佹眰鍜屽彲闈犳ц佹眰銆
缁间笂鎵杩帮紝鍗板埗鐢佃矾鏉跨殑璁捐¤佹眰鍖呮嫭甯冨眬銆佸昂瀵搞佺嚎璺璧板悜銆侀棿璺濄佹帴鍦般佸睆钄姐佹暎鐑銆佸彲闈犳с佸伐鑹哄拰鏉愭枡绛夋柟闈銆傚悓鏃讹紝瑕佸厖鍒嗚冭檻鎶楀共鎵拌捐★紝浠ユ彁楂樼數璺鏉垮湪瀹為檯搴旂敤涓鐨勭ǔ瀹氭у拰鍙闈犳с
③ 电路板的阻抗控制要求是什么
电路板的阻抗控制要求是什么?
电路板是电子产品必不可少的组成部分,其品质与性能直接影响整个产品的质量与成本。在电路板的设计中,电路板的阻抗控制是一个非常重要的要求。那么,电路板的阻抗控制要求是什么?
首先,什么是阻抗?阻抗是电路中电压和电流之比的综合物理和几何属性。也就是说,当电路板上出现高速信号时,阻抗控制即是为了保证这个信号的速度和能量不会失真或衰减,以确保信号传输的可靠性和完整性。
具体来说,电路板的阻抗控制主要包括以下两点:
1.器件阻抗要求
在电路板的设计中,不同的元器件都有其自己的阻抗要求。如高速差分信号传输的差分阻抗要求通常为90Ω,USB、SATA、PCIe等总线的单端阻抗要求则通常为50Ω。
为了满足不同的器件阻抗要求,可以通过PCB线宽、线距、线层等参数进行设计。
2.断面阻抗匹配要求
电路板中信号线和地线之间的电容和电感会产生一定的阻抗测量,也就是断面阻抗。为了保证在不同的断面之间信号的传输速率和质量一致,需要对不同断面阻抗进行匹配设计。
断面阻抗匹配设计一般采用堆叠线设计或反平面设计。堆叠线设计在设计信号层、电源层、地面层时将它们分别堆叠在一起,这样三个层之间形成的平面就形成了一个六边形的磁路,从而可确保信号传输的质量一致。反平面设计则是在信号层和地面层之间铺设反面线,使得其在两个地面层中分别分布,也能够有效地避免断面阻抗问题。
总之,电路板的阻抗控制是非常重要的,它不仅能够保证高速信号的质量和速率,还是保证整个产品可靠性和稳定性的重要保障。因此,在电路板设计中,我们需要根据不同的元器件阻抗要求和断面阻抗匹配要求,合理选择PCB线宽、线距、线层等参数,确保电路板的阻抗控制达到要求。
④ 电路板的布线要求是什么
PCB布线
在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的, 在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、 双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前, 可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行, 以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定, 包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通, 然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。 并试着重新再布线,以改进总体效果。
对目前高密度的PCB设计已感觉到贯通孔不太适应了, 它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用, 还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会, 才能得到其中的真谛。
1 电源、地线的处理
既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述:
(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm
对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)
(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。
2 数字电路与模拟电路的共地处理
现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。
3 信号线布在电(地)层上
在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。
4 大面积导体中连接腿的处理
在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。
5 布线中网络系统的作用
在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。
标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。
6 设计规则检查(DRC)
布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:
(1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。
(2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。
(3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。
(4)、模拟电路和数字电路部分,是否有各自独立的地线。
(5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。
(6)对一些不理想的线形进行修改。
(7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。
(8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。
第二篇 PCB布局
在设计中,布局是一个重要的环节。布局结果的好坏将直接影响布线的效果,因此可以这样认为,合理的布局是PCB设计成功的第一步。
布局的方式分两种,一种是交互式布局,另一种是自动布局,一般是在自动布局的基础上用交互式布局进行调整,在布局时还可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于布线的最佳布局。在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得PCB板中的有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来, 同时对模拟的有关信息进行更新,使得能对电路的电气性能及功能进行板级验证。
--考虑整体美观
一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。
在一个PCB板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。
--布局的检查
印制板尺寸是否与加工图纸尺寸相符?能否符合PCB制造工艺要求?有无定位标记?
元件在二维、三维空间上有无冲突?
元件布局是否疏密有序,排列整齐?是否全部布完?
需经常更换的元件能否方便的更换?插件板插入设备是否方便?
热敏元件与发热元件之间是否有适当的距离?
调整可调元件是否方便?
在需要散热的地方,装了散热器没有?空气流是否通畅?
信号流程是否顺畅且互连最短?
插头、插座等与机械设计是否矛盾?
线路的干扰问题是否有所考虑?
第三篇 高速PCB设计
(一)、电子系统设计所面临的挑战
随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路
通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定
上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间? 一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。通常高速逻辑器件的信号上升时间大约为0.2ns。如果板上有GaAs芯片,则最大布线长度为7.62mm。
设Tr 为信号上升时间, Tpd 为信号线传播延时。如果Tr≥4Tpd,信号落在安全区域。如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线
PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的最终阻抗称为特征阻抗Zo。线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号最终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。
(五)、传输线效应
基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
• 反射信号Reflected signals
• 延时和时序错误Delay & Timing errors
• 多次跨越逻辑电平门限错误False Switching
• 过冲与下冲Overshoot/Undershoot
• 串扰Inced Noise (or crosstalk)
• 电磁辐射EMI radiation
5.1 反射信号
如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真。当失真变形非常显著时可导致多种错误,引起设计失败。同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败。如果上述情况没有被足够考虑,EMI将显著增加,这就不单单影响自身设计结果,还会造成整个系统的失败。
反射信号产生的主要原因:过长的走线;未被匹配终结的传输线,过量电容或电感以及阻抗失配。
5.2 延时和时序错误
信号延时和时序错误表现为:信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变。过多的信号延时可能导致时序错误和器件功能的混乱。
通常在有多个接收端时会出现问题。电路设计师必须确定最坏情况下的时间延时以确保设计的正确性。信号延时产生的原因:驱动过载,走线过长。
5.3 多次跨越逻辑电平门限错误
信号在跳变的过程中可能多次跨越逻辑电平门限从而导致这一类型的错误。多次跨越逻辑电平门限错误是信号振荡的一种特殊的形式,即信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱。反射信号产生的原因:过长的走线,未被终结的传输线,过量电容或电感以及阻抗失配。
5.4 过冲与下冲
过冲与下冲来源于走线过长或者信号变化太快两方面的原因。虽然大多数元件接收端有输入保护二极管保护,但有时这些过冲电平会远远超过元件电源电压范围,损坏元器件。
5.5 串扰
串扰表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号,我们称之为串扰。
信号线距离地线越近,线间距越大,产生的串扰信号越小。异步信号和时钟信号更容易产生串扰。因此解串扰的方法是移开发生串扰的信号或屏蔽被严重干扰的信号。
5.6 电磁辐射
EMI(Electro-Magnetic Interference)即电磁干扰,产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面。EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作。它产生的主要原因是电路工作频率太高以及布局布线不合理。目前已有进行 EMI仿真的软件工具,但EMI仿真器都很昂贵,仿真参数和边界条件设置又很困难,这将直接影响仿真结果的准确性和实用性。最通常的做法是将控制EMI的各项设计规则应用在设计的每一环节,实现在设计各环节上的规则驱动和控制。
(六)、避免传输线效应的方法
针对上述传输线问题所引入的影响,我们从以下几方面谈谈控制这些影响的方法。
6.1 严格控制关键网线的走线长度
如果设计中有高速跳变的边沿,就必须考虑到在PCB板上存在传输线效应的问题。现在普遍使用的很高时钟频率的快速集成电路芯片更是存在这样的问题。解决这个问题有一些基本原则:如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。工作频率在50MHz布线长度应不大于1.5英寸。如果工作频率达到或超过75MHz布线长度应在1英寸。对于GaAs芯片最大的布线长度应为0.3英寸。如果超过这个标准,就存在传输线的问题。
6.2 合理规划走线的拓扑结构
解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构。走线的拓扑结构是指一根网线的布线顺序及布线结构。当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲。通常情形下,PCB走线采用两种基本拓扑结构,即菊花链(Daisy Chain)布线和星形(Star)分布。
对于菊花链布线,布线从驱动端开始,依次到达各接收端。如果使用串联电阻来改变信号特性,串联电阻的位置应该紧靠驱动端。在控制走线的高次谐波干扰方面,菊花链走线效果最好。但这种走线方式布通率最低,不容易100%布通。实际设计中,我们是使菊花链布线中分支长度尽可能短,安全的长度值应该是:Stub Delay <= Trt *0.1.
例如,高速TTL电路中的分支端长度应小于1.5英寸。这种拓扑结构占用的布线空间较小并可用单一电阻匹配终结。但是这种走线结构使得在不同的信号接收端信号的接收是不同步的。
星形拓扑结构可以有效的避免时钟信号的不同步问题,但在密度很高的PCB板上手工完成布线十分困难。采用自动布线器是完成星型布线的最好的方法。每条分支上都需要终端电阻。终端电阻的阻值应和连线的特征阻抗相匹配。这可通过手工计算,也可通过CAD工具计算出特征阻抗值和终端匹配电阻值。
在上面的两个例子中使用了简单的终端电阻,实际中可选择使用更复杂的匹配终端。第一种选择是RC匹配终端。RC匹配终端可以减少功率消耗,但只能使用于信号工作比较稳定的情况。这种方式最适合于对时钟线信号进行匹配处理。其缺点是RC匹配终端中的电容可能影响信号的形状和传播速度。
串联电阻匹配终端不会产生额外的功率消耗,但会减慢信号的传输。这种方式用于时间延迟影响不大的总线驱动电路。 串联电阻匹配终端的优势还在于可以减少板上器件的使用数量和连线密度。
最后一种方式为分离匹配终端,这种方式匹配元件需要放置在接收端附近。其优点是不会拉低信号,并且可以很好的避免噪声。典型的用于TTL输入信号(ACT, HCT, FAST)。
此外,对于终端匹配电阻的封装型式和安装型式也必须考虑。通常SMD表面贴装电阻比通孔元件具有较低的电感,所以SMD封装元件成为首选。如果选择普通直插电阻也有两种安装方式可选:垂直方式和水平方式。
垂直安装方式中电阻的一条安装管脚很短,可以减少电阻和电路板间的热阻,使电阻的热量更加容易散发到空气中。但较长的垂直安装会增加电阻的电感。水平安装方式因安装较低有更低的电感。但过热的电阻会出现漂移,在最坏的情况下电阻成为开路,造成PCB走线终结匹配失效,成为潜在的失败因素。
6.3 抑止电磁干扰的方法
很好地解决信号完整性问题将改善PCB板的电磁兼容性(EMC)。其中非常重要的是保证PCB板有很好的接地。对复杂的设计采用一个信号层配一个地线层是十分有效的方法。此外,使电路板的最外层信号的密度最小也是减少电磁辐射的好方法,这种方法可采用"表面积层"技术"Build-up"设计制做PCB来实现。表面积层通过在普通工艺 PCB 上增加薄绝缘层和用于贯穿这些层的微孔的组合来实现 ,电阻和电容可埋在表层下,单位面积上的走线密度会增加近一倍,因而可降低 PCB的体积。PCB 面积的缩小对走线的拓扑结构有巨大的影响,这意味着缩小的电流回路,缩小的分支走线长度,而电磁辐射近似正比于电流回路的面积;同时小体积特征意味着高密度引脚封装器件可以被使用,这又使得连线长度下降,从而电流回路减小,提高电磁兼容特性。
6.4 其它可采用技术
为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射。
当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好。这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。
任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。
如果没有电源层,那么长的电源连线会在信号和回路间形成环路,成为辐射源和易感应电路。
走线构成一个不穿过同一网线或其它走线的环路的情况称为开环。如果环路穿过同一网线其它走线则构成闭环。两种情况都会形成天线效应(线天线和环形天线)。天线对外产生EMI辐射,同时自身也是敏感电路。闭环是一个必须考虑的问题,因为它产生的辐射与闭环面积近似成正比。
结束语
高速电路设计是一个非常复杂的设计过程,ZUKEN公司的高速电路布线算法(Route Editor)和EMC/EMI分析软件(INCASES,Hot-Stage)应用于分析和发现问题。本文所阐述的方法就是专门针对解决这些高速电路设计问题的。此外,在进行高速电路设计时有多个因素需要加以考虑,这些因素有时互相对立。如高速器件布局时位置靠近,虽可以减少延时,但可能产生串扰和显著的热效应。因此在设计中,需权衡各因素,做出全面的折衷考虑;既满足设计要求,又降低设计复杂度。高速PCB设计手段的采用构成了设计过程的可控性,只有可控的,才是可靠的,也才能是成功的!
⑤ 什么是PCB电路板的工艺要求
1、PCB尺寸
【背景说明】PCB的尺寸受限于电子加工生产线设备的能力,因此,在产品系统方案设计时应考虑合适的PCB尺寸。
(1)SMT设备可贴装的最大PCB尺寸源于PCB板料的标准尺寸,大多数为20″×24″,即508mm×610mm(导轨宽度)
(2)推荐尺寸是SMT生产线各设备比较匹配的尺寸,有利于发挥各设备的生产效率,消除设备瓶颈。
(3)对于小尺寸的PCB应该设计成拼版,以提高整条生产线的生产效率。
【设计要求】
(1)一般情况下,PCB的最大尺寸应限制在460mm×610mm范围内。
(2)推荐尺寸范围为(200~250)mm×(250~350)mm,长宽比应《2。
(3)对于尺寸《125mm×125mm的PCB,应拼版为合适的尺寸。
2、PCB外形
【背景说明】SMT生产设备是用导轨传送PCB的,不能传送不规则外形的PCB,特别是角部有缺口的PCB。
【设计要求】
(1)PCB外形应为规则的方形且四角倒圆。
(2)为保证传送过程中的平稳性,对不规则形状的PCB应考虑用拼版的方式将其转换为规范的方形,特别是角部缺口最好要补齐,以免波峰焊接夹爪传送过程中卡板。
(3)纯SMT板,允许有缺口,但缺口尺寸应小于所在边长度的三分之一,对于超过此要求的,应将设计工艺边补齐。
(4)金手指的倒边设计除了插入边要求设计倒角外,插板两侧边也应该设计(1~1.5)×45°的倒角,以利于插入。
3、传送边
【背景说明】传送边的尺寸取决于设备的传送导轨要求,印刷机、贴片机和再流焊接炉,一般要求传送边在3.5mm以上。
【设计要求】
(1)为减少焊接时PCB的变形,对非拼版PCB一般将其长边方向作为传送方向;对于拼版也应将其长边方向作为传送方向。
(2)一般将PCB或拼版传送方向的两条边作为传送边,传送边的最小宽度为5.0mm,传送边正反面内,不能有任何元器件或焊点。
(3)非传送边,SMT设备方面没有限制,最好预留2.5mm的元件禁布区。
4、定位孔
【背景说明】拼版加工、组装、测试等很多工序需要PCB准确定位,因此,一般都要求设计定位孔。
【设计要求】
(1)每块PCB,至少应设计两个定位孔,一个设计为圆形,另一个设计为长槽形,前者用于定位,后者用于导向。
定位孔径没有特别要求,根据自己工厂的规范设计即可,推荐直径为2.4mm、3.0mm。
定位孔应为非金属化孔。如果PCB为冲裁PCB,则定位孔应设计孔盘,以加强刚度。
导向孔长一般取直径的2倍即可。
定位孔中心应离传送边5.0mm以上,两个定位孔尽可能离的远些,建议布局在PCB的对角处。
(2)对于混装PCB(安装有插件的PCBA,定位孔的位置最好正反一致,这样,工装的设计可以做到正反面公用,如装螺钉底托也可用于插件的托盘。
5、定位符号
【背景说明】现代贴片机、印刷机、光学检测设备(AOI)、焊膏检测设备(SPI)等都采用了光学定位系统。因此,PCB上必须设计光学定位符号。
【设计要求】
(1)定位符号分为整体定位符号(Global Ficial)与局部定位符号(Local
Ficial)。前者用于整板定位,后者用于拼版子板或精细间距元器件的定位。
(2)光学定位符号可以设计成正方形、菱形圆形、十字形、井字形等,高度为2.0mm。一般推荐设计成Ø1.0m的圆形铜定义图形,考虑到材料颜色与环境的反差,留出比光学定位符号大1mm的无阻焊区,其内不允许有任何字符,同一板面上的三个符号下内层有无铜箔应一致。
(3)在有贴片元器件的PCB面上,建议在板的角部布设三个整板光学定位符号,以便对PCB进行立体定位(三点决定一个平面,可以检测焊膏的厚度)。
(4)对于拼版,除了要有三个整板光学定位符号外,每块单元板上对角处最好也设计两个或三个拼版光学定位符号。
(5)对引线中心距≤0.5mm的QFP以及中心距≤0.8mm的BGA等器件,应在其对角设置局部光学定位符号,以便对其精确定位。
(6)如果是双面都有贴装元器件,则每一面都应该有光学定位符号。
(7)如果PCB上没有定位孔,光学定位符号的中心应距离PCB传送边6.5mm以上,如果PCB上有定位孔,光学定位符号的中心应设计在定位孔靠PCB中心侧。