『壹』 驱动多个Φ5LED的电池升压电路与电池升压充电(锂电池升压后给手机充电)电路区别在哪里
1:输出电压不同,多LED驱动所需电压比较高
2:输出波形不同,LED驱动输出是平滑直流,而充电电路输出是单向直流脉冲
3:充电电路还要根据充电电压的高低电流的大小进行调整和保护,而LED驱动电路就不需要,因为LED有很大的宽容性
4:充电电路在被充电池充满后结束充电,又要对被充电池继续检测,一旦被充电池电压下降又恢复到充电状态。
『贰』 升压式电荷泵LED驱动电路主要应用在什么场合
LED在可携式产品中背光源的地位已经不可动摇,即便是在大尺寸LCD的背光源当中,LED也开始挑战CCFL(冷阴极萤光灯)的主流地位;而在照明领域,LED作为半导体照明最关键的部件,更是因为顶着节能、环保、长寿命、免维护等诸多光环而受到市场的追捧。驱动电路是LED(发光二极管)产品的重要组成部分,无论在照明、背光源还是显示板领域,驱动电路技术架构的选择都应与具体的应用相匹配。 LED的发光原理是在它两端加上正向电压,使半导体中的少数载流子和多数载流子发生复合,放出过剩能量,从而引起光子的发射。LED驱动电路的主要功能是将交流电压转换为恒流电源,同时按照LED器件的要求完成与LED的电压和电流的匹配。LED驱动电路除了要满足安全要求外,另外的基本功能应有两个方面: 一是尽可能保持恒流特性,尤其在电源电压发生±15%的变动时,仍应能保持输出电流在±10%的范围内变动。用LED作为显示器或其他照明设备或背光源时,需要对其进行恒流驱动,主要原因是: 1、避免驱动电流超出最大额定值,影响其可靠性。 2、获得预期的亮度要求,并保证各个LED亮度、色度的一致性。 二是驱动电路应保持较低的自身功耗,这样才能使LED的系统效率保持在较高水准。
升压是LED驱动电路的重要任务,而电感升压和电荷泵升压是两种不同的拓扑模式。“由于LED是由电流驱动的,而电感在进行电流转换时效率最高,因此电感升压方式最大的优点就是效率高,如果设计得当可以超过90%;不过它的缺点也同样明显,就是电磁干扰很强,对手机等通信产品的系统要求就非常高。随着电荷泵的出现,目前大多数手机都不再采用电感升压方式。当然,采用电荷泵的升压方式其效率将低于电感升压。 无论在照明应用还是背光应用领域,提高驱动电路的转换效率都是产品设计者必须面对的问题。提高转换效率,不仅有利于可携式产品延长待机时间,同时也是解决LED散热问题的重要手段。在照明领域,由于使用大功率LED,因此提高转换效率就显得尤为重要。