导航:首页 > 电器电路 > 射频电路框图

射频电路框图

发布时间:2025-01-14 21:00:00

『壹』 浙大考研 (844)信号与电路基础 的内容和重点

《信号与电路基础》(科目代码844)考试大纲
特别提醒:本考试大纲仅适合2009年硕士研究生入学考试。该门课程包括四部
分内容,(-)信号与系统部分,占70分;(二)数字电路部分,占40分;(三)高频(射频)电路部分,占40分。

(一) 信号系统部分
1. 考研建议参考书目
于慧敏等编著《信号与系统》,化学工业出版社。
2. 基本要求
要求学生掌握用基本信号(单位冲激、复指数信号等)分解一般信号的数学表示和信号分析法;掌握LTI系统分析的常用模型(常系数线性微分、差分方程、卷积表示、系统函数及模拟框图等);掌握信号与系统分析的时域法和变换域法。要求学生掌握信号与系统分析的一些重要概念和信号与系统的基本性质,熟练掌握信号与系统的基本运算;掌握信号与系统概念的工程应用及方法:调制、采样、滤波、抽取和内插;掌握连续时间信号的离散化处理的原理和基本设计方法。

一.信号与系统的基本概念
(1)连续时间与离散时间的基本信号
(2)信号的运算与自变量变换
(3)系统的描述与基本性质
二.LTI系统的时域分析
(1)连续时间LTI系统的时域分析:卷积积分,卷积性质
(2)离散时间LTI系统的时域分析:卷积和,卷积性质
(3)零输入、零状态响应,单位冲激响应
(4)LTI系统的基本性质
(5)用微分方程、差分方程表征的LTI系统的框图表示
三.连续时间信号与系统的频域分析
(1)连续时间LTI系统的特征函数
(2)连续时间周期信号的傅里叶级数表示
(3)非周期信号连续时间的傅里叶变换
(4)傅里叶变换性质
(5)连续时间LTI系统频率响应,连续时间LTI系统的频域分析
(6)信号滤波、理想低通滤波器
四. 离散时间信号与系统的频域分析
(1)离散时间LTI系统的特征函数
(2)离散时间周期信号的傅立叶级数表示
(3)非周期离散时间信号的傅立叶变换
(4)离散时间傅立叶变换的性质
(5)离散时间LTI系统的频率响应,离散时间LTI系统的频域分析
五.采样、调制与通信系统
(1)连续时间信号的时域采样定理
(2)欠采样与频谱混叠
(3)离散时间信号的时域采样定理,离散时间信号的抽取和内插
(4)连续时间LTI系统的离散时间实现
(5)连续时间信号正弦载波幅度调制与频分复用
(6)脉冲幅度载波调制与时分复用
(7)离散时间信号正弦载波幅度调制。
六. 信号与系统的复频域分析
(1)双边拉氏变换,拉氏变换的收敛域、零极点
(2)常用信号的拉氏变换对
(3)拉氏变换性质
(4)拉氏反变换
(5)单边拉氏变换及其性质
(6)系统函数、连续时间LTI系统的复频域分析
七.离散时间信号与系统的Z域分析
(1)双边Z变换定义,离散时间Z变换的收敛域、零极点图
(2)Z变换性质
(3)常用信号的Z变换对
(4)Z反变换
(5)单边Z变换及其性质
(6)系统函数,离散时间LTI系统的Z域分析

(二)数字电路部分
1. 考研建议参考书目
1.«数字电子技术基础» 第五版 阎 石 主编 高等教育出版社
2. 基本要求
1.掌握二进制、十进制及其相互转换方法;掌握8421 BCD码、2421 BCD码、余3码和余3循环码的编码方法;掌握格雷码的编码规律、格雷码与二进制相互转换方法。
2.掌握逻辑代数的基本运算、基本定律和基本规则;掌握逻辑函数的标准形式;掌握逻辑函数的公式法化简方法和卡诺图化简方法;掌握逻辑函数的各种表示方法及其相互之间的转换。
3.熟悉CMOS集成门电路和TTL集成门电路的电路组成和原理;掌握 CMOS电路和TTL电路的主要参数的物理意义、输入输出特性和输入输出等效电路;掌握集成电路使用的注意事项。
4.掌握组合逻辑电路的分析和设计;熟悉组合逻辑的竞争和冒险。
5.掌握组合逻辑模电路(优先编码器、译码器、数据选择器、加法器和比较器)的电路功能、逻辑关系、扩展和应用。
6.掌握各种触发器(基本RS、时钟RS、主从JK、边沿JK、边沿D和边沿T)的状态转换真值表、状态转换方程、激励方程、状态转换图和各种触发器的电路符号;掌握触发器的动态特性。
7.掌握同步时序电路的分析过程;掌握同步时序电路的设计;掌握寄存器、二进制计数器、十进制同步计数器、可逆计数器和移位寄存器电路功能,掌握这些器件的应用;了解常用异步计数器的功能和应用。
8.掌握用计数器实现控制器和序列信号发生器等常用时序电路的方法。
9.掌握数模、模数转换的原理和应用。
10.熟悉半导体存储器组成原理和应用,掌握存储器容量扩展方法。
11. 掌握脉冲波形变换电路和脉冲波产生电路。

(三)高频(射频)电路部分
1.考研建议参考书目
陈邦媛著《射频通信电路(第二版)》,科学出版社。
2.基本要求
(1)掌握发射机,超外差式接收机射频部分的结构框图,各部件功能与主要性能指标。
(2)掌握射频电路设计的主要基础知识:
a) LC串并联谐振回路:谐振频率,谐振阻抗,Q值,幅频特性及相频特性。
b) 阻抗变换:理想变压器阻抗变换,电抗部分接入阻抗变换,L网络阻抗变换,传输线变压器阻抗变换。
c) 有关噪声的基本知识:电阻热噪声,噪声系数,噪声温度,多级线性网络级连总噪声系数。
d) 非线性器件在频谱搬移中的作用:主要掌握线性时变工作的特点。
(3)从时域和频域两方面理解模拟调幅(AM,DSB,SSB)及调频的概念:表达式,波形,
调制指数,频谱结构,带宽,功率。
(4) 低噪声放大器的主要性能指标。
(5) 混频器的主要性能指标,三种主要形式混频器(单管,Gilbert乘法器,二极管)的原理分析,变频增益计算。
(6) 反馈型振荡器的三个基本条件(起振,平衡,稳定),LC振荡电路(互感耦合,三点式),石英晶体振荡电路及变容管压控振荡电路分析。
(7) 锁相环的基础知识:环路组成,环路方程,锁定特征,跟踪性能的分析方法。
(8) 幅度调制与解调电路:
a) 幅度调制的基本实现方框图。
b) 包络检波与同步检波(乘积型,迭加型)的原理电路分析。
(9) 调频与解调电路:
a) 变容二极管直接调频电路分析。
b) 几种常见的鉴频电路(斜率鉴频,正交鉴频)的原理分析。
(10) 三类常用的功率放大电路(A类,B类,C类)的特点,电流电压波形,效率。会用简单的L网络进行放大器与负载间的阻抗变换。

『贰』 石英晶振的石英晶体原理

石英晶体提供了两种共振模式,由 C1 与 L1 构成的串联共振,与由 C0、C1 与 L1 构成的并联共振。
对于一般的 MHz 级石英晶体而言,串联共振频率一般会比并联共振频率低若干 KHz。 频率在 30 MHz 以下的石英晶体,通常工作时的频率处于串联共振频率与并联共振频率之间,此时石英晶体呈现电感性阻抗。因为,外部电路上的电容会把电路的振荡频率拉低一些。在设计石英晶体振荡电路时,也应令电路上的杂散电容与外加电容合计値与晶体厂商使用的负载电容值相同,振荡频率才会准确符合厂商的规格。
频率在 30 MHz 以上(到 200 MHz)的石英晶体,通常工作于串联共振模式,工作时的阻抗处于最低点,相当于 Rs 。 此种晶体通常标示串联电阻( < 100 Ω )而非并联负载电容。 为了达到高的振荡频率,石英晶体会振荡在它的一个谐波频率上,此谐波频率是基频的整数倍。 只使用奇数次谐波,例如 3 倍、 5 倍、与 7 倍的泛音晶体。 要达到所要的振荡频率,振荡电路上会加入额外的电容器与电感器,以选择出所需的频率。 石英晶体振荡器分非温度补偿式晶体振荡器、温度补偿晶体振荡器(TCXO)、电压控制晶体振荡器(VCXO)、恒温控制式晶体振荡器(OCXO)和数字化/μp补偿式晶体振荡器(DCXO/MCXO)等几种类型。其中,无温度补偿式晶体振荡器是最简单的一种,在日本工业标准(JIS)中,称其为标准封装晶体振荡器(SPXO)。现以SPXO为例,简要介绍一下石英晶体振荡器的结构与工作原理。
石英晶体,有天然的也有人造的,是一种重要的压电晶体材料。石英晶体本身并非振荡器,它只有借助于有源激励和无源电抗网络方可产生振荡。SPXO主要是由品质因数(Q)很高的晶体谐振器(即晶体振子)与反馈式振荡电路组成的。石英晶体振子是振荡器中的重要元件,晶体的频率(基频或n次谐波频率)及其温度特性在很大程度上取决于其切割取向。石英晶体谐振器的基本结构、(金属壳)封装及其等效电路如图1所示。
只要在晶体振子板极上施加交变电压,就会使晶片产生机械变形振动,此现象即所谓逆压电效应。当外加电压频率等于晶体谐振器的固有频率时,就会发生压电谐振,从而导致机械变形的振幅突然增大。在图1(c)所示的晶体谐振器的等效电路中,Co为晶片
(a)石英晶体振子的结构
(b)金属壳封装示图(c)等效电路
与金属板之间的静电电容;L、C为压电谐振的等效参量;R为振动磨擦损耗的等效电阻。石英晶体谐振器存在一个串联谐振频率fos(1/2π),同时也存在一个并联谐振频率fop(1/2π)。由于Co?C,fop与fos之间之差值很小,并且R?ωOL,R?1/ωOC,所以谐振电路的品质因数Q非常高(可达数百万),从而使石英晶体谐振器组成的振荡器频率稳定度十分高,可达10-12/日。石英晶体振荡器的振荡频率既可近似工作于fos处,也可工作在fop附近,因此石英晶体振荡器可分串联型和并联型两种。用石英晶体谐振器及其等效电路,取代LC振荡器中构成谐振回路的电感(L)和电容(C)元件,则很容易理解晶体振荡器的工作原理。
SPXO的总精度(包括起始精度和随温度、电压及负载产生的变化)可以达到±25ppm。SPXO既无温度补偿也无温度控制措施,其频率温度特性几乎完全由石英晶体振子的频率温度特性所决定。在0~70℃范围内,SPXO的频率稳定度通常为20~1000ppm,SPXO可以用作钟频振荡器。 TCXO是通过附加的温度补偿电路使由周围温度变化产生的振荡频率变化量削减的一种石英晶体振荡器。
1TCXO的温度补偿方式
CXO,对石英晶体振子频率温度漂移的补偿方法主要有直接补偿和间接补偿两种类型:
(1)直接补偿型
直接补偿型TCXO是由热敏电阻和阻容元件组成的温度补偿电路,在振荡器中与石英晶体振子串联而成的。在温度变化时,热敏电阻的阻值和晶体等效串联电容容值相应变化,从而抵消或削减振荡频率的温度漂移。该补偿方式电路简单,成本较低,节省印制电路板(PCB)尺寸和空间,适用于小型和低压小电流场合。但当要求晶体振荡器精度小于±1pmm时,直接补偿方式并不适宜。
(2)间接补偿型
间接补偿型又分模拟式和数字式两种类型。模拟式间接温度补偿是利用热敏电阻等温度传感元件组成温度-电压变换电路,并将该电压施加到一支与晶体振子相串接的变容二极管上,通过晶体振子串联电容量的变化,对晶体振子的非线性频率漂移进行补偿。该补偿方式能实现±0.5ppm的高精度,但在3V以下的低电压情况下受到限制。数字化间接温度补偿是在模拟式补偿电路中的温度—电压变换电路之后再加一级模/数(A/D)变换器,将模拟量转换成数字量。该法可实现自动温度补偿,使晶体振荡器频率稳定度非常高,但具体的补偿电路比较复杂,成本也较高,只适用于基地站和广播电台等要求高精度化的情况。
2.TCXO发展现状
TCXO在近十几年中得到长足发展,其中在精密TCXO的研究开发与生产方面,日本居领先和主宰地位。在70年代末汽车电话用TCXO的体积达20?以上,主流产品降至0.4?,超小型化的TCXO器件体积仅为0.27?。在30年中,TCXO的体积缩小了50余倍乃至100倍。日本京陶瓷公司采用回流焊接方法生产的表面贴装TCXO厚度由4mm降至2mm,在振荡启动4ms后即可达到额定振荡幅度的90%。金石(KSS)集团生产的TCXO频率范围为2~80MHz,温度从-10℃到60℃变化时的稳定度为±1ppm或±2ppm;数字式TCXO的频率覆盖范围为0.2~90MHz,频率稳定度为±0.1ppm(-30℃~+85℃)。日本东泽通信机生产的TCO-935/937型片式直接温补型TCXO,频率温度特性(点频15.36MHz)为±1ppm/-20~+70℃,在5V±5%的电源电压下的频率电压特性为±0.3ppm,输出正弦波波形(幅值为1VPP),电流损耗不足2mA,体积1?,重量仅为1g。PiezoTechnology生产的X3080型TCXO采用表面贴装和穿孔两种封装,正弦波或逻辑输出,在-55℃~85℃范围内能达到±0.25~±1ppm的精度。国内的产品水平也较高,如北京瑞华欣科技开发有限公司推出的TCXO(32~40MHz)在室温下精度优于±1ppm,第一年的频率老化率为±1ppm,频率(机械)微调≥±3ppm,电源功耗≤120mw。前高稳定度的TCXO器件,精度可达±0.05ppm。
高精度、低功耗和小型化,仍然是TCXO的研究课题。在小型化与片式化方面,面临不少困难,其中主要的有两点:一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;二是片式封装后在其回流焊接作业中,由于焊接温度远高于TCXO的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将TCXO的频率变化量控制在±0.5×10-6以下。但是,TCXO的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。
3.TCXO的应用
石英晶体振荡器的发展及其在无线系统中的应用
(a)
(b)
图2移动通信机电路框图及其TCXO外观
由于TCXO具有较高的频率稳定度,而且体积小,在小电流下能够快速启动,其应用领域重点扩展到移动通信系统。
图2(a)为移动通信机射频(RF)电路框图。TCXO作为基准振荡器为发送信道提供频率基准,同时作为接收通道的第一级本机振荡器;另一只TCXO作为第2级本机振荡器,将其振荡信号输入到第2变频器。移动电话要求的频率稳定度为0.1~2.5ppm(-30~+75℃),但出于成本上的考虑,通常选用的规格为1.5~2.5ppm。移动电话用12~20MHz的TCXO代表性产品之一是VC-TCXO-201C1,采用直接补偿方式,外观如图2(b)所示,由日本金石(KSS)公司生产。 电压控制晶体振荡器(VCXO),是通过施加外部
控制电压使振荡频率可变或是可以调制的石英晶体振荡器。在典型的VCXO中,通常是通过调谐电压改变变容二极管的电容量来“牵引”石英晶体振子频率的。VCXO允许频率控制范围比较宽,实际的牵引度范围约为±200ppm甚至更大。
如果要求VCXO的输出频率比石英晶体振子所能实现的频率还要高,可采用倍频方案。扩展调谐范围的另一个方法是将晶体振荡器的输出信号与VCXO的输出信号混频。与单一的振荡器相比,这种外差式的两个振荡器信号调谐范围有明显扩展。
在移动通信基地站中作为高精度基准信号源使用的VCXO代表性产品是日本精工·爱普生公司生产的VG-2320SC。这种采用与IC同样塑封的4引脚器件,内装单独开发的专用IC,器件尺寸为12.6mm×7.6mm×1.9mm,体积为0.19?。其标准频率为12~20MHz,电源电压为3.0±0.3V,工作电流不大于2mA,在-20~+75℃范围内的频率稳定度≤±1.5ppm,频率可变范围是±20~±35ppm,启动振荡时间小于4ms。金石集团生产的VCXO,频率覆盖范围为10~360MHz,频率牵引度从±60ppm到±100ppm。VCXO封装发展趋势是朝SMD方向发展,并且在电源电压方面尽可能采用3.3V。日本东洋通信机生产的TCO-947系列片式VCXO,早在90年代中期前就应用于汽车电话系统。该系列VCXO的工作频率点是12.8MHz、13MHz、14.5MHz和15.36MHz,频率温度特性±2.5ppm/-30~+75℃,频率电压特性±0.3ppm/5V±5%,老化特性±1ppm/年,内部采用SMD/SMC,并采用激光束和汽相点焊方式封装,高度为4mm。日本富士电气化学公司开发的个人手持电话系统(PHS)等移动通信用VCXO,共有两大类六个系列,为适应SMT要求,全部采用SMD封装。Saronix的S1318型、Vectron国际公司的J型、Champion技术公司的K1526型和Fordahi公司的DFVS1-KH/LH等VCXO,均是表面贴装器件,电源电压为3.3V或5V,可覆盖的频率范围或最高频率分别为32~120MHz、155MHz、2~40MHz和1-50MHz,牵引度从±25ppm到±150ppm不等。MF电子公司生产的T-VCXO系列产品尺寸为5mm×7mm,曾被业内认为是外形尺寸最小的产品,但这个小型化的记录很快被打破。新推出的双频终端机用VCXO尺寸仅为5.8mm×4.8mm,并且有的内装2只VCXO。Raltron电子公司生产的VX-8000系
图3压控SAW振荡器内部结构
图4OCXO内部结构示图
列表面贴装VCXO,采用引线封装时高度为0.185英寸,采用扁平封装时仅为0.15英寸,工作频率可在1~160MHz内选择,标准频率调整范围为±100ppm,线性度优于±10%,稳定度优于±25ppm/0~70℃,老化率为±2ppm/年,输出负载达10个LSTTL(单价达10美元以上)。
于1998年7月上市的单价2000日元的UCV4系列压控振荡器(VCO),面向全球移动通信系统(GSM)和个人数字蜂窝电话(PDC),可用频率范围为650~1700MHz,电源电压为2.2~3.3V,尺寸仅为4.8mm×5.5mm×1.9mm,体积为0.05?,重量0.12g。
日本精工·爱普生公司利用ST切型晶片制作的声表面波(SAW)谐振器(Q≌2000),型号为FS-555,用4.8mm×5.2mm×1.5mm陶瓷容器包封,振荡频率范围达250~500MHz,频率初始偏差为±25~100ppm,在-20~60℃范围内的频率稳定度是±27ppm,老化率为±10ppm/年。利用FS-555组成的压控SAW振荡器内部结构如图3所示。欲扩大频率调节范围,可加大串联电感Lo的电感量。由于SAW谐振器的频率可达2GHz以上,为压控SAW振荡器(VCSO)的高频化提供了一条重要途径。 CXO是利用恒温槽使晶体振荡器或石英晶体振子的温度保持恒定,将由周围温度变化引起的振荡器输出频率变化量削减到最小的晶体振荡器,其内部结构如图4所示。在OCXO中,有的只将石英晶体振子置于恒温槽中,有的是将石英晶体振子和有关重要元器件置于恒温槽中,还有的将石英晶体振子置于内部的恒温槽中,而将振荡电路置于外部的恒温槽中进行温度补偿,实行双重恒温槽控制法。利用比例控制的恒温槽能把晶体的温度稳定度提高到5000倍以上,使振荡器频率稳定度至少保持在1×10-9。OCXO主要用于移动通信基地站、国防、导航、频率计数器、频谱和网络分析仪等设备、仪表中。
OCXO是由恒温槽控制电路和振荡器电路构成的。通常人们是利用热敏电阻“电桥”构成的差动串联放大器,来实现温度控制的。具有自动增益控制(AGC)的(C1app)振荡电路,获得振荡频率高稳定度的比较理想的技术方案。
在近几年中,OCXO的技术水平有了很大的提高。日本电波工业公司开发的新器件功耗仅为老产品的1/10。在克服OCXO功耗较大这一缺点方面取得了重大突破。该公司使用应力补偿切割(SCCut)石英晶体振子制作的OCXO,与使用AT切形石英晶体振子的OCXO比较,具有高得多的频率稳定度和非常低的相位噪声。相位噪声是指信号功率与噪声功率的比率(C/N),是表征频率颤抖的技术指标。在对预期信号既定补偿处,以1Hz带宽为单位来测量相位噪声。Bliley公司用AT切形晶体制作的NV45A在补偿点10Hz、100Hz、1kHz和10kHz处的相位噪声分别为100、135、140和145dBc/Hz,而用SC切割晶体制成的同样OCXO,则在所有补偿点上的噪声性能都优于5dBc/Hz。
金石集团生产的OCXO,频率范围为5~120MHz,在-10~+60℃的温度范围内,频率稳定度有±0.02、±0.03和±0.05ppm,老化指标为±0.02ppm/年和±0.05ppm/年。Oak频率控制公司的4895型4.096~45MHz双恒温箱控制OCXO,温度稳定度仅为0.002ppm(2×10-10)/0~75℃;4895型OCXO的尺寸是50.8mm×50.8mm×38.3mm,老化率为±0.03ppm/年。如果体积缩小一点,在性能指标上则会有所牺牲。Oak公司生产的10~25MHz表面贴装OCXO,频率稳定度为±0.05ppm/0~70℃。PiezoCrystal的275型用于全球定位系统(GPS)的OCXO采用SC切形石英晶体振子,在0~75℃范围内总频偏小于±0.005ppm,最大老化率为±0.005ppm/年。Vectron国际公司的CO-760型OCXO,尺寸为25.4mm见方,高12.7mm,在OCXO产品中,体积算是较小的。随着移动通信产品的迅猛增长,对OCXO的市场需求量会逐年增加。OCXO的发展方向是顺应高频化、高频率稳定度和低相位噪声的要求,但在尺寸上的缩小余地非常有限。
日本金石、始建于1948年的NibonDempaKogyo公司和美国摩托罗位、韩国的Sunny-Emi等公司,都是生产石英晶体器件较大的厂商。国内生产石英晶体振荡器等元器件的单位有原电子工业部第十研究所、北京707厂、国营第875厂和一些合资企业等。我国对人造石英晶体及其元器件的研究开发起步较早,生产能力也较大。就石英晶体振荡器而言,与国外先进水平比较,主要是在片式化、小型化、高频化和频率温度特性等方面还存在差距。尽快缩小这些差距,进一步扩大生产规模,提高产品性价比,是提高在国际市场上竞争力的必由之路。与此同时,还要跟踪该器件发展的新动向,如,视频发生器等振荡器的研究与应用。

阅读全文

与射频电路框图相关的资料

热点内容
沈阳小米手机售后维修点查询 浏览:477
中松家电的质量怎么样 浏览:478
七星电热水器售后电话 浏览:804
家电控制线什么颜色 浏览:575
怎么撕家具保护膜 浏览:416
三星s8防水什么级别 浏览:977
安徽国家电网二批什么时候体检 浏览:297
卡西欧哈尔滨售后维修点查询 浏览:206
什么材质的围裙又防水又防高温 浏览:733
苹果怎么分辨为未激活与翻新机 浏览:463
家具厂如何缩短冷轧板的时间 浏览:303
路基亚电动车维修售后电话 浏览:835
小家电出口台湾需要什么认证 浏览:386
河北维修宽带电话多少钱 浏览:332
dw表防水怎么办 浏览:353
国家电网保安干什么的6 浏览:104
露台改成阳台如何防水 浏览:456
开发商维修责任有哪些 浏览:86
消防水管外露如何遮住 浏览:132
都捡了一台手机怎么翻新 浏览:15