A. 无功补偿的线路
2.1 LCD串联接法
这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。既然有这么多的优点,应该是非常理想的补偿装置了。但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到还没有被广泛采用或使用者很少。
2.2 采用电力半导体器件
作为电容器组的投切开关,较常采用的接线方式如图2。图中BK为半导体器件,C1为电容器组。这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。
作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。动态补偿的补偿效果还要看控制器是否有较高的性能及参数。很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。
当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并入线路运行。需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。
元器件可以选单相晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。
2.3 混合投切方式
实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,但就其控制技术,还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。
2.4 无功发生器SVG
利用PWM整流控制技术,通过对电网的电压和电流实时采样和高性能DSP计算出电网的无功功率,实现无功功率的补偿。SVG的特点是可实现对动态连续无功补偿,并可实现感性无功和容性无功的补偿,使电网的功率因数稳定在0.98以上。SVG不仅对无功功率进行补偿,而且可对谐波电流实现补偿。
B. 无功补偿 电容接线图
交流使用的电容并不是只有一个出口和一个入口。
三相的电容一般是并联的,有两种接口:
①一种是接三个同样的电容,是进行无功补偿,提高功率因数的。
②一种是只接一个电容,将三相电机在只有单相电源也就是照明电源的地方使用,电容的用途是移相。