导航:首页 > 电器电路 > 示波器电路

示波器电路

发布时间:2021-01-01 13:47:51

❶ 请问,如何把示波器连接到电路

采用电容耦合,电容有隔直通交的作用,在实际电路中也可以如此采用电容耦合专的方属式
当然,想达到更好的效果可让采集的直流成份变为一正一负电压相同的两个直流,然后用简单的加就可以去除直流成份,此方法对频率影响不大
实现起来复杂一点,在这儿就说不清楚了
还有一方法就是将采集到的信号分成两路,一路反相,然后相减,这样交流成份变为了以前的两倍,而直流成份消除了
此方法对频率影响不大
实现起来复杂一点,在这儿就说不清楚了

❷ 如何根据示波器波形检测电路

用示来波器检测电路,实际上是和用万用源表检测电路类似,你了解电路的大致电压情况,你就能很快根据电压情况找到问题的所在。用示波器一样,你如果了解电路的大致电压情况和波形的状况,你也就对检测结果一目了然了。
不知道被测点的波形,你就不能判别测量出的波形正确与否,这样当然检测就无意义。

❸ 示波器输入电路的问题

最为简易的探头电路就是屏蔽良好的适合广泛频带的传输线加上两端连内接工具。一些为了适合不同信号容幅度的测试其内部加了一些衰减电路。很多衰减电路就是一个无感电阻和一个高频电容并联。过去的电子爱好者都是自己制作测试连接导线。通常使用一段电视机使用的天线材料可以作为各种示波器的固定连接使用。需要衰减可以再讨论。

示波器,是显示被测量的瞬时值轨迹变化情况的仪器。利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线,便于人们研究各种电现象的变化过程。普通示波器有显示电路、垂直(Y轴)放大电路、水平(X轴)放大电路、扫描与同步电路、电源供给电路五个基本组成部分。另外,还可以用它测试各种不同的电量,如电压、电流、峰峰值、频率、相位差、调幅度等等。

❹ 示波器的原理图是什么样的…………

以下是书上的解释 呵呵
一、示波器的工作原理:
示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
(一)示波器的组成普通示波器有五个基本组成部分:显示电路、垂直(Y轴)放大电路、水平(X轴)放大电路、扫描与同步电路、电源供给电路。普通示波器的原理功能方框图如图5-1所示。
1.显示电路
显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管的基本原理图如图5-2所示。由图可见,示波管由电子枪、偏转系统和荧光屏3个部分组成。
(1)电子枪
电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。
第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控制极小孔的电子束,在第一阳极和第二阳极高电位的作用下,得到加速,向荧光屏方向作高速运动。由于电荷的同性相斥,电子束会逐渐散开。通过第一阳极、第二阳极之间电场的聚焦作用,使电子重新聚集起来并交汇于一点。适当控制第一阳极和第二阳极之间电位差的大小,便能使焦点刚好落在荧光屏上,显现一个光亮细小的圆点。改变第一阳极和第二阳极之间的电位差,可起调节光点聚焦的作用,这就是示波器的“聚焦”和“辅助聚焦”调节的原理。第三阳极是示波管锥体内部涂上一层石墨形成的,通常加有很高的电压,它有三个作用:①使穿过偏转系统以后的电子进一步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;②石墨层涂在整个锥体上,能起到屏蔽作用;③电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些电子。
(2)偏转系统
示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。当电子在偏转板之间运动时,如果偏转板上没有加电压,偏转板之间无电场,离开第二阳极后进入偏转系统的电子将沿轴向运动,射向屏幕的中心。如果偏转板上有电压,偏转板之间则有电场,进入偏转系统的电子会在偏转电场的作用下射向荧光屏的指定位置。
如图5-3所示。如果两块偏转板互相平行,并且它们的电位差等于零,那么通过偏转板空间的,具有速度υ的电子束就会沿着原方向(设为轴线方向)运动,并打在荧光屏的坐标原点上。如果两块偏转板之间存在着恒定的电位差,则偏转板间就形成一个电场,这个电场与电子的运动方向相垂直,于是电子就朝着电位比较高的偏转板偏转。这样,在两偏转板之间的空间,电子就沿着抛物线在这一点上做切线运动。最后,电子降落在荧光屏上的A点,这个A点距离荧光屏原点(0)有一段距离,这段距离称为偏转量,用y表示。偏转量y与偏转板上所加的电压Vy成正比。同理,在水平偏转板上加有直流电压时,也发生类似情况,只是光点在水平方向上偏转。
(3)荧光屏
荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。
涂有不同荧光物质的荧光屏,在受电子冲击时将显示出不同的颜色和不同的余辉时间,通常供观察一般信号波形用的是发绿光的,属中余辉示波管,供观察非周期性及低频信号用的是发橙黄色光的,属长余辉示波管;供照相用的示波器中,一般都采用发蓝色的短余辉示波管。

❺ 如何用示波器测量放大电路的相频特性

如果要测量相频特性,
则需要示波器至少有2个通道,另外肯定还需要一台信号发生器用于内扫频或容手动改变频率;

测量时,信号发生器的输出端接待测放大器的输入端,同时接到示波器的一个通道,放大器的输出端则接示波器的另一个通道。

利用示波器的光标功能,可以读出两个通道之间的时间差,这个时间差可以进一步换算成相位差。稍微先进一点的数字示波器,会提供直接对两个通道相位差进行测量的功能,这样会更为方便。

逐步改变信号发生器的频率,重复测量,可以得到不同频率下的相位差;
以频率为横轴,相位差为纵轴,描点后即可得到放大器的相频特性。

利用以上方法,可以测量出+/-180度以内的相移。

❻ 示波器工作的原理

示波器是一种用途十分广泛的电子测量仪器。俗话说,电是看不见摸不着的。但是示波器可以帮我们“看见”电信号,便于人们研究各种电现象的变化过程。所以示波器的核心功能,就和他的名字一样,是显示电信号波形的仪器,以供工程师查找定位问题或评估系统性能等等。

而波形,也有多种定义,比如时域或者频域的波形,对于示波器而言,大多数时候测量的是电压随时间的变化,也就是时域的波形。因此,示波器可以分析被测点电压变化情况,从而被广泛的应用于各个电子行业及领域中。

一般我们业内对示波器的分类只按模拟示波器和数字示波器来分,有些厂家可能为了突出其示波器的某项功能给其命名为其他名字,比如数字荧光示波器等。但其本质原理依然逃不出这2大示波器类别。

模拟示波器是属于早期的示波器,主要基于阴极射线管(也叫显像管,曾广泛应用于早期的电视机、显示器)打出的电子束通过水平偏转和垂直偏转系统,打在屏幕的荧光物质上显示波形。

③ARM处理器控制FPGA调节ADC模数转换器采样率,示波器软件上表现为调节时基,由于存储深度为固定值,采样率 = 存储深度 ÷ 波形记录时长,通常时基设置的改变是通过改变采样率来实现的。因此厂家标注的采样率往往是在特定时基设置之下才有效的,在大时基下受存储深度的影响,采样率不得不降低。ADC模数转换器和RAM高速存储器影响着示波器的另外两大指标:采样率和存储深度。

④接下去,由FPGA驱动ADC同步采样,ADC将采集到的数据进行二进制数据化并写入高速缓存。存储器缓存即存储深度,一般存储器的大小是示波器标识存储深度大小的四倍,因为FPGA无法控制示波器的触发,因此采集的信号必定先是标识存储深度的2倍,然后再来根据触发筛选其中的一段波形,所以示波器可以看到触发位置之前的波形。又由于示波器在筛选之前采集的波形的时候,采集不能停,否则就会导致波形捕获率太低,因此同时还需要继续采集同样长度的采样点,如此反复,这样一来就是四倍了。

⑤收到触发指令后,存储器再把数据交给ARM处理器处理

⑥ARM处理器将数据处理后通过显示接口将数据输出至显示屏展示给使用者。通过计算,示波器还能模仿出类似模拟示波器的多级辉度显示,以及数字示波器特有的色温显示效果,余晖显示效果。

⑦示波器处理完数据后,可以把当前的波形图像或者是数据保存到存储器中,要注意这里的存储完全不同于存储深度的高速存缓,大多数示波器采用外部存储器如U盘,SD卡,电脑等,现在一些现代化的示波器会内置大存储可以直接保存在示波器里。

这个过程中,②③④都是并行处理的。


由于数字示波器处理速度的制约,所以它并不能保证被测信号的波形能连续不断地实时显示在屏幕上,显示的两个波形之间会有波形数据丢失,也即所说的死区时间,这也是数字示波器相比较于模拟示波器的最大缺点了。不过,随着示波器运算能力的增强,波形捕获率的不断上升,这一缺点也在被慢慢弥补。

❼ 画出函数发生器和示波器的内部电路的原理框图

示波器由示波管、垂直通道和水平通道三个部分组成:

图中,首先由控制寄存器将外部控制器送人的数据转化为频率和幅度控制字;然后再由分频器根据频率控制字进行分频并将输出作为寻址计时器时钟;寻址计数器的寻址空间为360字节,可对ROM中的寻址表进行寻址。

❽ 示波器的工作原理

示波器分为模拟示波器和数字示波器,现阶段大多数都是数字示波器,我目前只用过鼎阳的数字示波器,现在我主要说一下数字示波器的工作原理。

数字示波器简单的说是对连续信号进行片断式的采集,然后以波形的方式显示。

在示波器内部主要分为这几个部分:输入单元,放大单元,采集存储单元,触发单元,数据处理单元,显示单元。

屏幕显示

3.存档系统

在示波器处理完数据后,可以把当前的波形图像或者是数据保存到存储器中,一般为外部存储器如U盘,SD卡,电脑等。


不同品牌的示波器可能使用不同,但是原理基本上就是这些了。

❾ 示波器原理与使用

示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。

用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测

波形显示
由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。

如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。

如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为Vo(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2、3、…、8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。

如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线(如图5-6所示)。由图5-6所示可见,在时间t=0的瞬间,信号电压为Vo(零值),锯齿波电压为V0′(负值),荧光屏上光点在坐标原点左面,位移的距离正比于电压V0′;在时间t=1的瞬间,交流电压为V1(正值),锯齿波电压为V1′(负值),荧光屏上光点在坐标的第Ⅱ象限中。同理,在时间t=2,t=3,…,t=8的瞬间,荧光屏上光点分别位于2,3,…,8点。在t=8瞬间,锯齿波电压由最大正值V8′跳变到最大负V0′,因而荧光屏上的光点也从8点极其迅速地向左移到起始位置0点。以后,在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。

由上述可见,为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关

SHS1000
系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。

❿ 一插示波器电路就能正常工作是为什么

电路有自激。接入示波器探头后,破坏了振荡条件,电路不自激了,所以正常工作。

阅读全文

与示波器电路相关的资料

热点内容
防水涂料脱层是怎么回事 浏览:803
山东滨州创维维修电话是多少钱 浏览:879
空压机售后服务如何考核 浏览:318
荣事达售后电话合肥 浏览:89
红米4x维修要多久 浏览:865
淘宝店铺怎么找商家电话 浏览:597
徐州哪里做宜家家具 浏览:36
浙江最大的家具厂有多少人 浏览:278
空调售后安装服务费怎么做账 浏览:915
杜菲尼唐山售后电话 浏览:335
闽威电路板 浏览:18
周大福铂金钻戒翻新多少钱 浏览:948
飘板电路 浏览:280
胆iv电路 浏览:709
光辉家居企业集团 浏览:650
卫生间涂了防水后做什么 浏览:476
坐北朝南的屋子家具放哪个方向 浏览:378
控制电路并联 浏览:832
开五金家具厂需要多少投入 浏览:551
天猫详情售后及其他怎么填 浏览:430