① 加工中心主轴维修都有哪些要点
加工中心有不同的主轴形式,常用的有三种,分别是皮带式主轴、直结式主轴、电主轴。
1、加工中心皮带式主轴
皮带式主轴用途非常广泛,小到小型加工中心,大到大型立式加工中心和龙门加工中心。皮带式主轴转速一般不会超过8000转,转速越大噪音越大,但是皮带式主轴力度比较大,非常适合重切削,所以被广泛的用于大型的加工中心之中。
2、加工中心直结式主轴
直结式主轴在高速加工中心和钻攻中心用得比较多,通常转速都能达到12000转。转速和切削力成一个反比函数,基本上转速越大切削力越小,所以直结式主轴切削力是不如皮带式主轴的。皮带式主轴胜在更加稳定,加工一些对表面光洁度要求高的工件有很大的优势。使用直结式主轴的加工中心基本上都是以加工小型零件及产品为主,不做重切削。
3、加工中心电主轴
电主轴相对于以上两种主轴来说是最新型的主轴,这种主轴转速非常之高,即使是50000转也不是什么难事,但是上文也提到,转速越大切削力度就越小,这种电主轴转速确实是最快的,但是切削力度却是最小的,几乎只能用于铣。国外在电主轴方面可以说是全面领先于国,国外的电主轴最大转速达到几十万也有,这种安装超高速的电主轴的加工中心被称为超高速加工中心。但是其实际用处可能还不如直结式主轴。
电主轴常见故障的维修分析与排除方法:
1、电主轴发热
(1)主轴轴承预紧力过大,造成主轴回转时摩擦过大,引起主轴温度急剧升高。
故障排除方法:可以通过重新调整主轴轴承预紧力加以排除。
(2)主轴轴承研伤或损坏,也会造成主轴回转时摩擦过大,引起主轴温度急剧升高。
故障排除方法:可以通过更换新轴承加以排除。
(3)主轴润滑油脏或有杂质,也会造成主轴回转时阻力过大,引起主轴温度升高。
故障排除方法:通过清洗主轴箱,重新换油加以排除。
(4)主轴轴承润滑油脂耗尽或润滑油脂过多,也会造成主轴回转时阻力、摩擦过大,引起主轴温度升高。
故障排除方法:通过重新涂抹润滑脂加以排除。
2、电主轴强力切削时停转
(1)主轴电动机与主轴连接的传动带过松,造成主轴传动转矩过小,强力切削时主轴转矩不足,产生报警,数控机床自动停机。
故障排除方法:通过重新调整主轴传动带的张紧力,加以排除。
(2)主轴电动机与主轴连接的传动带表面有油,造成主轴传动时传动带打滑,强力切削时主轴转矩不足,产生报警,数控机床自动停机。
故障排除方法:通过用汽油或酒精清洗后擦干净加以排除。
(3)主轴电动机与主轴连接的传动带使用过久而失效,造成主轴电动机转矩无法传动,强力切削时主轴转矩不足,产生报警,数控机床自动停机。
故障排除方法:通过更换新的主轴传动带加以排除。
(4)主轴传动机构中的离合器、联轴器连接、调整过松或磨损,造成主轴电动机转矩传动误差过大,强力切削时主轴振动强烈。产生报警,数控机床自动停机。
故障排除方法:通过调整、更换离合器或联轴器加以排除。
3、电主轴工作时噪声过大
(1)主轴部件动平衡不良,使主轴回转时振动过大,引起工作噪声。
故障排除方法:需要机床生产厂家的专业人员对所有主轴部件重新进行动平衡检查与调试。
(2)主轴传动齿轮磨损,使齿轮啮合间隙过大,主轴回转时冲击振动过大,引起工作噪声。
故障排除方法:需要机床生产厂家的专业人员对主轴传动齿轮进行检查、维修或更换。
(3)主轴支承轴承拉毛或损坏,使主轴回转间隙过大,回转时冲击、振动过大,引起工作噪声。
故障排除方法:需要机床生产厂家的专业人员对轴承进行检查、维修或更换。
(4)主轴传动带松弛或磨损,使主轴回转时摩擦过大,引起工作噪声。
故障排除方法:通过调整或更换传动带加以排除。
4、刀具无法夹紧
(1)碟形弹簧位移量太小,使主轴抓刀、夹紧装置无法到达正确位置,刀具无法夹紧。
故障排除方法:通过调整碟形弹簧行程长度加以排除。
(2)弹簧夹头损坏,使主轴夹紧装置无法夹紧刀具。
故障排除方法:通过更换新弹簧夹头加以排除。
(3)碟形弹簧失效,使主轴抓刀、夹紧装置无法运动到达正确位置,刀具无法夹紧。
故障排除方法:通过更换新碟形弹簧加以排除。
(4)刀柄上拉钉过长,顶撞到主轴抓刀、夹紧装置,使其无法运动到达正确位置,刀具无法夹紧。
故障排除方法:通过调整或更换拉钉,并正确安装加以排除。
5、刀具夹紧后不能松开
(1)松刀液压缸压力和行程不够。
故障排除方法:通过调整液压力和行程开关位置加以排除。
(2)碟形弹簧压合过紧,使主轴夹紧装置无法完全运动到达正确位置,刀具无法松开。
故障排除方法:通过调整碟形弹簧上的螺母,减小弹簧压合量加以排除。
电主轴高速旋转时发热严重的分析及处理过程:
电主轴运转中的发热和温升问题始终是研究的焦点。电主轴单元的内部有两个主要热源:一是主轴轴承,另一个是内藏式主电动机。
电主轴单元最突出的问题是内藏式主电动机的发热。由于主电动机旁边就是主轴轴承,如果主电动机的散热问题解决不好,还会影响机床工作的可靠性。主要的解决方法是采用循环冷却结构,分外循环和内循环两种,冷却介质可以是水或油,使电动机与前后轴承都能得到充分冷却。
主轴轴承是电主轴的核心支撑,也是电主轴的主要热源之一。当前高速电主轴,大多数采用角接触陶瓷球轴承。因为陶瓷球轴承具有以下特点:
①由于滚珠重量轻,离心力小,动摩擦力矩小。
②因温升引起的热膨胀小,使轴承的预紧力稳定。
③弹性变形量小,刚度高,寿命长。由于电主轴的运转速度高,因此对主轴轴承的动态、热态性能有严格要求。合理的预紧力,良好而充分的润滑是保证主轴正常运转的必要条件。
采用油雾润滑,雾化发生器进气压为0.25~0.3MPa,选用20#透平油,油滴速度控制在80~100滴/min。润滑油雾在充分润滑轴承的同时,还带走了大量的热量。前后轴承的润滑油分配是非常重要的问题,必须加以严格控制。进气口截面大于前后喷油口截面的总和,排气应顺畅,各喷油小孔的喷射角与轴线呈15o夹角,使油雾直接喷入轴承工作区。
电主轴维修工艺的要点:
1、根据电主轴的损坏情况,测量静态、动态径向跳动及抬起间隙和轴向窜动量。
2、用自制的专用工具拆卸电主轴。清洗并测量转子摆差和磨损情况。
3、选配轴承。每组轴承的内孔及外径的一致性误差均要≤0.002~0.003mm,与套筒的内孔保持0.004~0.008mm的间隙;与主轴保持0.0025~0.005mm的间隙。电主轴维修认准机械,在实际操作中,以双手大拇指能将轴承推入套筒的配合为最好。过紧会引起轴承外环变形,轴承温升过高,过松则降低磨头的刚度。
4、轴承的清洁,是保证轴承正常工作及使用寿命的重要环节,切勿用压缩空气吹转轴承,因压缩空气中的硬性微粒会使滚道拉毛。
5、圆锥轴承或角接触球轴承一定注意轴承安装方向,否则达不到回转精度要求。整个装配过程采用专用工具,以消除装配误差,保证装配质量。
6、当套筒内孔变形、圆度超差,或与轴承配合过松时,可采用局部电镀法进行补偿再研磨至要求,轴颈处也可采用此法。
7、电主轴上的圆螺母、油封盖等零件的端面分别与轴承内外环的端面紧密接触,因而其螺纹部分与端面的垂直度要求很高,可以采用涂色法检查接触情况。若接触率<80%,可研磨端面,使之达到垂直度要求。此项工作很重要,它的精度会影响磨床主轴接长杆的径向跳动,从而影响到磨削工件的表面粗糙度。
8、装配后的电主轴进行轴向调整(调整时用拉簧秤测量),同时应测量静态、动态径向跳动及抬起间隙,直至达到装配工艺要求。
9、在机器实际运转条件下,排除装配、机器运转时的热变形等因素的影响,在一定转速下,应用动平衡仪对转子进行动平衡。
由于电主轴是高速精密元件,定期维护是非常有必要的。电主轴定期维护如下:
1、电主轴的轴向跳动一般要求为0.002mm(2μm),每年检测2次。
2、电主轴内锥孔的径向跳动一般要求为0.002mm(2μm),每年检测2次。
3、电主轴芯棒远端(250mm)径向跳动一般要求为:0.012mm(12μm),每年检测2次。
4、蝶形弹簧的涨紧力要求为:16~27KN(以HSK63为例)每年检测2次。
5、拉刀杆松刀时伸出的距离为:10.5±0.1mm(以HSK63为例)每年检测4次。
加工中心(英文缩写为CNC全称为ComputerizedNumericalControl):是带有刀库和自动换刀装置的一种高度自动化的多功能数控机床。工件在加工中心上经一次装夹后,数字控制系统能控制机床按不同工序,自动选择和更换刀具,自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其他辅助机能,依次完成工件几个面上多工序的加工。并且有多种换刀或选刀功能,从而使生产效率大大提高。
② 数控机床维修问题
1 数控机床故障的分类
常见故障按产生原因分为机械故障和电气故障两类。所以,维修中首先要判断是机械故障还是电气故障,先检查电气系统看程序能否正常运行,功能键是否正常,有无报警现象等,再检查是否有缺相、过流、欠压或运动异常等现象。根据上述情况,则可初步判断故障原因在机械方面还是在电气方面。
2 典型故障的诊断与排除方法
2.1 常规检查法 ①报警处理:数控系统发生故障时,一般在操作面板上给出故障信号和相应的信息。通常系统的操作手册或调整手册中都有详细的报警内容和处理方法。同时可以利用操作面板或编程器根据电路图和PLC 程序,查出相应的信号状态,按逻辑关系找出故障点进行处理。②无报警或无法报警的故障处理:当系统无法运行,停机或系统没有报警但工作不正常时,需要根据故障发生前后的系统状态信息,运用已掌握的理论基础,进行分析,做出正确的判断。这种利用可编程控制器进行PLC中断状态分析,其中断原因以中断堆栈的方式记忆。
例如:一台SCHIESS VMG6 7轴五连动数控机床,采用西门子840D系统其可编程控制器S7300在运行中产生中断故障,利用系统诊断中断堆栈的方法可以十分迅速的找到故障原因,通过SIMATIC Manager 访问这一功能,选择菜单功能PLC->Diagnostic/setting->Mole Information->Diagnostic Buffer,可打开诊断缓冲器,诊断缓冲器中按先后顺序存储着所有可用于系统诊断的事件。选中了一个事件后,在“Dtails on Event"信息框中可以看到关于该事件的详细说明:事件(ID)代号和事件号、块类型和号码,根据事件,如导致该事件的指令的相对STL行地址。单击〖Help on Event〗按钮,可打开事件帮助信息窗口。单击〖Open Block〗按钮,可在线打开CPU中出现中断的块,如利用这种方法在实际维修工作中是十分迅速有效的。维修人员应当充分熟悉系统的自诊断功能的一些特殊处理方法。这样就会少走弯路,较快排除故障。
2.2 初始化法 一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次清除故障;若系统工作存贮区由于掉电、拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除。
例如:一台德国PFH100KW-6米数控龙门铣镗床采用西门子840C数控系统,由于系统工作存贮区混乱,开关后只定在一个初始化界面,系统根本无法进入,一般性复位无效,必须对系统进行初始化清除,就采用了初始化复位法,进入〖start up〗菜单->利用〖general reset mode information on startup〗->选择〖end gen reset mode〗进行这种特殊的复位法之后,系统才能重启进行正常操作,故障解除。
2.3 参数修正法 在数控机床维修中,有时要利用某些参数来调整机床,有些参数要根据机床的运行状态进行必要的修正,这种方法与机械维修相配合是十分有效的。例如:一台法国Forestφ250数控落地镗采用NUM1060系统爬行严重,虽进行了X轴导轨的大修但此方向立柱的运行仍无法满足加工要求,原因是前导轨已经严重研伤,在机械调节能力有限的基础上试着进行参数更改,将P21 Servo-system loop gain coefficient伺服系统的位置环增益系数逐渐修调,NUM机床参数的设置步骤及操作方法介绍如下:①上电后按软键Fll-SELECT THE UTILITY②选择0项ACCESS TO UTILITY PROGRAMMES③选择第5项SETUP DATA④这时出现画面WARNING MACHINE CONTROL WILL BE STOPPED WHENCHANGING PARAMETES OK?(Y/N),键人Y字母⑤出现画面MACHINE SETUP DATA 0 DISPLAY 1 CHANGE……,如果更改请键入1⑥出现PARAMETER?如果更改参数P21则键入P21⑦出现该参数后将光标移到字按#键入参数值回车即可⑧按键CTRL+X Off系统复位退出参数设定即可。经多次调试P21数值由950最终降为700后机床爬行故障得到好转,保证了生产的进行。所以维修人员要多查资料多了解机床各种参数的意义及参数更改的方法。这样就可以在机械调节能力一定的基础上通过修改NC数据使机床的性能得到更好更大的发挥,提高它的加工精度。
3 数控机床电气、液压和冷却润滑系统的保养
3.1 电气系统的保养
3.1.1 清除电气柜内的积灰,保持电路板、电气元件表面干净。由于环境温度过高,数控柜内一般都要加装空调装置。安装空调后,数控系统的可靠性有明显的提高。
3.1.2 机床周围电器 检查机床各部件之间连接导线、电缆不得被腐蚀与破损,发现隐患后及时处理,以防止短路、断路。紧固好接线端子和电器元件上的压线螺钉,使接线头牢固可靠。
3.1.3 机床电源 检查数控系统供电是否正常,电压波动是否在允许范围之内,整个数控电气系统接地是否良好可靠。接地可靠是系统防止干扰、工作可靠的保证。
例如:一台美国AB的10×40米数控车铣床在调试过程中发现,机床通讯经常突然中断很异常,通过检查发现电控框屏蔽层接地不好,使程序信号受干扰引起失真,是导致上述问题的原因,将电缆屏蔽层、机床配电柜元器件良好接地后故障排除。
3.2 液压系统的保养 要定期对油箱内的油液进行更换,且有时机床油号的选择也要由工作现场的环境温度,油路系统不同而定。定期检查更换密封件,清洗油箱和管路,防止液压系统泄漏。检查系统的噪声、振动、压力、温度等是否正常,将故障排除在萌芽状态。
3.3 冷却润滑系统保养 检查导轨润滑油箱的油量,润滑油泵是否能定时启动、停止。定期检查油泵、清洗过滤器、油箱、更换润滑油。如切削液太脏,应清洗切削液箱、更换切削液。在使用过程中,因此,要求除了掌握数控机床的性能及精心操作外,还要注意消除各种不利的影响因素。
应该强调的是,虽然数控机床的系统种类繁多,但是各类数控机床的保养方法基本相同。只要操作者与维修人员做到认真操作,精心维护,就可以及时发现和消除隐患,减少维修费用,从而保证了数控机床更长时间安全可靠的运行,切实贯彻了设备管理以防为主的主导思想,从而有效的保证和提高了企业的经济效益。
③ 数控加工中心常见的问题与对策各是什么
1、参数突然丢失(0MD系统)
FANUC专家您好:我公司一台卧式加工中心在运行中出现930AL和CRT显示条形乱码,重新关机开机后所有参数丢失.然后在开机状态下输入参数机床可以正常运行.不知这是为什么?烦请您给予支持与帮助.在此表示感谢!
答:参数突然丢失,可能与存储板、电池或外部干扰有关,930也说明外部可能有干扰导致CPU工作不正常,出现系统报警。也不排除主板或其他PCB故障。
2、926报警(18i)
感谢贵公司对我前两次疑问的回复。现另一加工中心出现了926报警,之后控制系统的LCD上除报警信息外,无任何显示(当时电控柜内温度较高),不知何故,盼解答。谢谢!
答:926报警(FSSB报警)原因和处理连接CNC和伺服放大器的FSSB(伺服串行总线)发生故障。如果连接轴控制卡的FSSB,光缆和伺服放大器出现问题,就会发生此报警。??确认故障位置使用伺服放大器上的LED判断。使用伺服放大器上的7段LED可以确认故障的位置??伺服放大器的电源如果某个伺服放大器的电源出现故障,就发生FSSB报警。由于放大故障器控制电源电压下降,或编码器电缆的+5V接地,或其他原因造成电源故障,引发FSSB报警。??更换轴控制卡如果由以上措施诊断出轴控制卡存在故障,就更换主CPU板上的轴控制卡。
3、报警(0imate-B)
你好:非常感谢贵公司的产品给我们的生产带来了放便,最近我公司的一台车床经常出现920,911,930报警,其中930最多,请提供技术支持.我将不胜感激.地址;山东省滨洲市惠民县活塞公司
答:911SRAMPARITY:(BYTE1)在部分程序存储RAM中发生奇偶校验错误。全清RAM,或更换SRAM模块或主板。然后重新设定参数和数据。920SERVOALARM(1-4AXIS)这是伺服报警(第一到第四轴)。出现了监控报警或伺服模块内RAM奇偶错误。请更换主板上的伺服控制模块930CPUINTERRUPTCPU报警非正常中断。主板或CPU卡不良。可以通过交换部件的方法确认故障部件,另外机床接地,外部干扰也必须引起注意
4、参数不可改写(BJ-FANUCOi-MB)
你好,我公司有一台新机为台湾产的远东机,新机装好后,试机,发现B轴不能回零,当B轴转到回零开关处开始减速,但转没多久就会出现90号报警,不能回零,不知是什么原因,请帮忙!多谢!
答:90号报警说明:当不满足?在返回参考点的方向上,以相当于位置偏差量(DGN.300)大于128个脉冲的速度返回参考点时,CNC至少有一次收到了1转信号的条件,进行返回参考点时,出现此报警。检查:1.回零速度.2.一转信号?
5、加工中心(FANUC-18iM)
机床在停用一段时间后开机,出现报警:701:OVERHEAT:FANMOTOR经查该报警为CNC系统冷却风扇故障,但是检查后发现风扇运转正常,报警一直不能消除掉。最后只有将参数8901的#0由”0”改为”1”,屏蔽掉该报警。希望能够帮助解决,谢谢!
答:风扇坏了,但还可以转动,只能购买一个新的更换。
常见故障问答
6、机床报警(FANUC-18)
在主轴过载后机床报警,报警号为751,主轴伺服模块报警号为AL-73请问怎样修理。
答:电机传感器信号断线。(1)电机励磁关闭时发生报警的情形(a)参数设定有误确认传感器设定参数。(b)电缆断线请更换电缆。(c)传感器调整故障请进行传感器信号的调整。无法调整时或信号观测不到时,请更换连接电缆及传感器。(d)SPM故障请更换SPM或SPM控制印制电路板。(2)触动电缆时(主轴运行等)发生报警可能是导线断线,请更换电缆。有切削油侵入连接器部分时,请进行清洗(3)电机旋转时发生报警的情形(a)传感器与SPM之间的电缆屏蔽处理故障确认电缆屏蔽处理。(b)与伺服电机的动力线绑扎到了一起如果从传感器到SPM之间电缆与伺服电机动力线绑扎到了一起,请分别绑扎。
7、351报警(Oi-M)
一加工中心,OI-M系统,NC控制X,Y,Z,B4轴,B轴为回转轴。故障现象:在加工中,出现351报警,且均在N5H6Z344.2程序段处,但此段并没有B轴工作指令。出现故障后,4轴模块均出现”-”显示。重新上电后正常,工作一段时间后,又出现此故障。现平均每班出现2-3回。解决:通过诊断画面0203#5#6为1,故障范围为1:信号电缆连接不良;2编码器,主板,伺服模块硬件不良。因为重起一遍后可以暂时排除故障,可以排除1。针对2,我们把编码器,主板,伺服模块的插头重插了一遍,没什么效果,故障还是有。请您分析一下,我们下一步该怎么做
答:主要从1处查,和信号电缆有关,检查报警的轴的信号电缆线,看在什么时候有移动(往往在其他轴移动式,这个轴的电缆被拖动)。电缆线如果长期被折过来折过去,就会接触不好,报警就会不定期出现。这时候只能更换新的电缆了。
8、408#和409#同时报警处理(FANUC0MD)
机床出现408和409报警的原因有几种,请指教
答:一般不太可能同时出现408,409报警。408是通信不良,就是主轴放大器和系统(存储板)之间不能通信。一般是主轴放大器没有电,或接口坏了409报警,是主轴放大器出现了报警号码。具体的报警号码在放大器上显示。
9、风扇(0i-mate-TB)
系统出现”611,9113”号报警后,经检查电源模块冷却片风扇不转,更换另一台正常运转的风扇后正常工作。确认风扇坏。购买同一类型的的风扇更换后仍旧出现上述报警(风扇正常运转),经检查发现此风扇虽然同一厂家生产但电流较之原来的0.1A大了0.03A,再将之与主轴驱动模块上的风扇实施对调,不再出现”611,9113”号报警,但在CRT上出现”FAN”闪烁,不影响加工。问是否风扇的检测并不以来热敏电阻之类的检测元件,而仅仅是电流大小的检测而已?
答:最好购买同型号的风扇CRT上出现”FAN”闪烁是因为主轴驱动模块散热片上还有一个外部风扇有问题
10、971报警!(BJFANUC0i-MateTB)
该机床为沈阳机床厂生产的CAK6150D数控车,在自动运行过程中经常出现971号报警,关闭CNC后再开启,报警消除!请指导维修~!
答:可能是I/O卡的电源或连接线松动。
11、请问FS21T系统的506,507报警表示什么(FS21T)
我公司的一台FS21T系统的数控车床开机即报警506、507,请问FS21T系统的506、507报警表示什么,怎样解决?
答:506OVERTRAVEL:+nExceededthen-thaxis+sidehardwareOT.507OVERTRAVEL:-nExceededthen-thaxis-sidehardwareOT.硬件超程是否同时出现?
12、位置显示(FANUC-0M)
位置显示故障,位置显示由原来小数点后三位变为四位答:参数修改:No.0001#0SCW1改为0即可
追问: 在找点。。。。太少了。。。回答:
1、采用适当合理的对刀方法
刀具安装后,在执行加工程序前首先要进行对刀以确定起始点位置。而对刀常常是操作者颇感头疼的事(经济型数控无自测装置),费工费时,特别是多刀加工时,还需测刀补值。通常,常用的对刀方法有:
点动对刀法
按住控制面板上点动键,将刀尖轻触被加工件表面(X和Z两个方向分两次进行点动),计数器清零,再退到需设定的初始位置(X、Z设计初值),再清零,得到该刀初始位置。依次确定每把刀的初始位置,经试加工后再调整到准确的设计位置(起始点)。这种方法无须任何辅具,随手就可操作,但时间较长,特别是每修磨一次刀具就必须重新调整一次。
该方法适合于简单工序或初次安装调试。
采用对刀仪法 机床选配的对刀仪有采用自测装置,但操作复杂,仍须花费一定的准备时间。适合多刀测量时使用。
采用数控刀具
刀具安装经初次定位后,在经过一段时间切削后产生磨损而需要刃磨,普通刀具刃磨后重新安装时的刀尖位置发生了变化,需要重新对刀。而数控刀具的特点是刀具制造精度高,刀片转位后重复定位精度在0.02mm 左右,大大减少了对刀时间:同时,刀片表面上涂有耐磨层(SiC、TiC等),使其耐用度大大提高(3~5倍),但成本较高。
采用自制对刀块法
用塑料、有机玻璃等制成简易对刀块,可方便地实现刀具刃磨后的重复定位,但定位精度较差,通常在0.2~0.5mm,但仍不失为一种快速定位方法,再次调整就很快很方便了。
2、加工球面易产生形状误差的消除方法
在加工球面尤其是加工过象限的球、曲面时,由于调整不当,很容易产生凸肩、铲背等情况。其原因主要有:
系统间隙造成
在设备传动副中,丝杠与螺母之间存在着一定的间隙,随着设备投入运行时间的增长,该间隙因磨损而逐渐增大,因此,对反向运动时进行相应的间隙补偿是克服加工表面产生凸肩的主要因素。间隙测量通常采有百分表测量法,误差控制在0.01~0.02mm之内。这里要指出的是表座和表杆不应伸出过高过长,因为测量时由于悬臂较长,表座易受力移动,造成计数不准,补偿值也就不真实了。
工件加工余量不均造成
在实现零件设计表面之前,待加工表面的加工余量是否均匀也是造成成型表面能否达到设计要求的一个重要原因,因为加工余量不均易造成“复映”误差。因此,对表面形状要求较高的零件,在成型前应尽可能做到加工余量均匀或者通过多加工一道型面的方法以达到设计要求。
刀具选择不当造成
刀具在切削中是通过主切削刃来去除材料的。但在圆弧加工过象限后,圆弧与刀具副切削刃(副后面与基面的交线)相切之后,此后副切削刃就可能参与了切削(也就是铲背)。因此在选择或修磨刀具时,一定要考虑好刀具的楔角。
3、合理设计加工工艺
使用数控加工设备进行加工,效率高、质量好,但如果工艺设计安排不当,则不能很好地体现它的优势。从一些厂家加工使用来看,存在着如下一些问题:
工序过于分散
产生这个问题的原因在于怕繁(指准备时间),编程简单、简化操作加工,使用一把刀加工易调整对刀、习惯于普通加工。
这样就造成了产品质量(位置公差)不易保证,生产效率不能很好地发挥。因此,工艺人员和操作者应全面熟悉数控加工知识,多进行尝试,以掌握相关知识,尽可能采用工序集中的方法进行加工,多用几次,自然会体现它的优势。采用工序集中后,单位加工时间增长,我们将两台设备面对面布置,实现了一人操作两台设备,效率得到大幅提高,质量也得到了很好的保证。
加工顺序不合理
有些操作者考虑到准备上的一些问题,常把加工顺序安排得极不合理。数控加工通常按一般机械加工工艺编制的要求进行加工,如先粗后细(换刀),先里后外,合理选择切削参数等,这样,质量和效率才能提高。
慎用G00(G26、G27、G29)快速定位指令
G00指令给编程和使用带来了很大方便。但如果设置和使用不当,常常会造成因速度设置过大产生回零时过冲、精度下降、设备导轨面拉伤等不良后果。回零路线不注意,易产生碰撞工件和设备的安全事故。因此,在考虑使用G00
指令时,应考虑周全,不可随意。
在数控加工中,尤其还应注意加强程序的检索和试运行。在程序输入控制系统后,操作者应当利用SCH
键及↑、↓、←、→移动键进行不确定和确定检索,必要时对程序进行修改,保证程序的准确性。同时,在正式执行程序加工前,必须经过程序试运行(打开功放),以确认加工路线是否与设计路线一致。
以上是使用数控加工设备时的一些常见问题与解决办法。在实际工作中可能还会遇到其他一些问题,但只要工程技术人员和操作者集思广益,认真掌握有关数控方面的知识和技巧,数控设备就能够很好地为企业发挥最大的效益。 一、问:如何对加工工序进行划分?答:数控加工工序的划分一般可按下列方法进行:(1)刀具集中分序法
就是按所用刀具划分工序,用同一把刀具加工完零件上所有可以完成的部位。在用第二把刀、第三把完成它们可以完成的其它部位。这样可减少换刀次数,压缩空程时间,减少不必要的定位误差。(2)以加工部位分序法
对于加工内容很多的零件,可按其结构特点将加工部分分成几个部分,如内形、外形、曲面或平面等。一般先加工平面、定位面,后加工孔;先加工简单的几何形状,再加工复杂的几何形状;先加工精度较低的部位,再加工精度要求较高的部位。(3)以粗、精加工分序法
对于易发生加工变形的零件,由于粗加工后可能发生的变形而需要进行校形,故一般来说凡要进行粗、精加工的都要将工序分开。综上所述,在划分工序时,一定要视零件的结构与工艺性,机床的功能,零件数控加工内容的多少,安装次数及本单位生产组织状况灵活掌握。另建议采用工序集中的原则还是采用工序分散的原则,要根据实际情况来确定,但一定力求合理。二、问:加工顺序的安排应遵循什么原则?答:加工顺序的安排应根据零件的结构和毛坯状况,以及定位夹紧的需要来考虑,重点是工件的刚性不被破坏。顺序一般应按下列原则进行:(1)上道工序的加工不能影响下道工序的定位与夹紧,中间穿插有通用机床加工工序的也要综合考虑。(2)先进行内形内腔加工序,后进行外形加工工序。(3)以相同定位、夹紧方式或同一把刀加工的工序最好连接进行,以减少重复定位次数,换刀次数与挪动压板次数。(4)在同一次安装中进行的多道工序,应先安排对工件刚性破坏小的工序。三、问:工件装夹方式的确定应注意那几方面?答:在确定定位基准与夹紧方案时应注意下列三点:(1)力求设计、工艺、与编程计算的基准统一。(2)尽量减少装夹次数,尽可能做到在一次定位后就能加工出全部待加工表面。(3)避免采用占机人工调整方案。(4)夹具要开畅,其定位、夹紧机构不能影响加工中的走刀(如产生碰撞),碰到此类情况时,可采用用虎钳或加底板抽螺丝的方式装夹。四、问:如何确定对刀点比较合理?工件坐标系与编程坐标系有什么关系?1、对刀点可以设在被加工零件的上,但注意对刀点必须是基准位或已精加工过的部位,有时在第一道工序后对刀点被加工毁坏,会导致第二道工序和之后的对刀点无从查找,因此在第一道工序对刀时注意要在与定位基准有相对固定尺寸关系的地方设立一个相对对刀位置,这样可以根据它们之间的相对位置关系找回原对刀点。这个相对对对刀位置通常设在机床工作台或夹具上。其选择原则如下:
1)找正容易。 2)编程方便。 3)对刀误差小。 4)加工时检查方便、可靠。 2、工件坐标系的原点位置是由操作者自己设定的,它在工件装夹完毕后,通过对刀确定,它反映的是工件与机床零点之间的距离位置关系。工件坐标系一旦固定,一般不作改变。工件坐标系与编程坐标系两者必须统一,即在加工时,工件坐标系和编程坐标系是一致的。
五、问:如何选择走刀路线? 走刀路线是指数控加工过程中刀具相对于被加工件的运动轨迹和方向。加工路线的合理选择是非常重要的,因为它与零件的加工精度和表面质量密却相关。在确定走刀路线是主要考虑下列几点:
1)保证零件的加工精度要求。 2)方便数值计算,减少编程工作量。 3)寻求最短加工路线,减少空刀时间以提高加工效率。 4)尽量减少程序段数。 5)保证工件轮廓表面加工后的粗糙度的要求,最终轮廓应安排最后一走刀连续加工出来。 6)刀具的进退刀(切入与切出)路线也要认真考虑,以尽量减少在轮廓处停刀(切削力突然变化造成弹性变形)而留下刀痕,也要避免在轮廓面上垂直下刀而划伤工件。
六、问:如何在加工过程中监控与调整? 工件在找正及程序调试完成之后,就可进入自动加工阶段。在自动加工过程中,操作者要对切削的过程进行监控,防止出现非正常切削造成工件质量问题及其它事故。
对切削过程进行监控主要考虑以下几个方面: 1、加工过程监控
粗加工主要考虑的是工件表面的多余余量的快速切除。在机床自动加工过程中,根据设定的切削用量,刀具按预定的切削轨迹自动切削。此时操作者应注意通过切削负荷表观察自动加工过程中的切削负荷变化情况,根据刀具的承受力状况,调整切削用量,发挥机床的最大效率。
2、切削过程中切削声音的监控
在自动切削过程中,一般开始切削时,刀具切削工件的声音是稳定的、连续的、轻快的,此时机床的运动是平稳的。随着切削过程的进行,当工件上有硬质点或刀具磨损或刀具送夹等原因后,切削过程出现不稳定,不稳定的表现是切削声音发生变化,刀具与工件之间会出现相互撞击声,机床会出现震动。此时应及时调整切削用量及切削条件,当调整效果不明显时,应暂停机床,检查刀具及工件状况。
3、精加工过程监控
精加工,主要是保证工件的加工尺寸和加工表面质量,切削速度较高,进给量较大。此时应着重注意积屑瘤对加工表面的影响,对于型腔加工,还应注意拐角处加工过切与让刀。对于上述问题的解决,一是要注意调整切削液的喷淋位置,让加工表面时刻处于最佳]的冷却条件;二是要注意观察工件的已加工面质量,通过调整切削用量,尽可能避免质量的变化。如调整仍无明显效果,则应停机检察原程序编得是否合理。
特别注意的是,在暂停检查或停机检查时,要注意刀具的位置。如刀具在切削过程中停机,突然的主轴停转,会使工件表面产生刀痕。一般应在刀具离开切削状态时,考虑停机。
4、刀具监控
刀具的质量很大程度决定了工件的加工质量。在自动加工切削过程中,要通过声音监控、切削时间控制、切削过程中暂停检查、工件表面分析等方法判断刀具的正常磨损状况及非正常破损状况。要根据加工要求,对刀具及时处理,防止发生由刀具未及时处理而产生的加工质量问题。
七、问:如何合理选择加工刀具?切削用量有几大要素?有几种材料的刀具?如何确定刀具的转速,切削速度,切削宽度?
1、平面铣削时应选用不重磨硬质合金端铣刀或立铣刀。一般铣削时,尽量采用二次走刀加工,第一次走刀最好用端铣刀粗铣,沿工件表面连续走刀。每次走刀宽度推荐至为刀具直径的60%--75%。
2、立铣刀和镶硬质合金刀片的端铣刀主要用于加工凸台、凹槽和箱口面。 3、球刀、圆刀(亦称圆鼻刀)常用于加工曲面和变斜角轮廓外形。而球刀多用于半精加工和精加工。镶硬质合金刀具的圆刀多用于开粗。
八、问:加工程序单有什么作用?在加工程序单中应包括什么内容? (一)加工程序单是数控加工工艺设计的内容之一,也是需要操作者遵守、执行的规程,是加工程序的具体说明,目的是让操作者明确程序的内容、装夹和定位方式、各个加工程序所选用的刀具既应注意的问题等。
(二)在加工程序单里,应包括:绘图和编程文件名,工件名称,装夹草图,程序名,每个程序所使用的刀具、切削的最大深度,加工性质(如粗加工还是精加工),理论加工时间等。
九、问:数控编程前要做何准备? 答:在确定加工工艺后,编程前要了解:1、工件装夹方式
;2、工件毛胚的大小----以便确定加工的范围或是否需要多次装夹;3、工件的材料----以便选择加工所使用何种刀具;4、库存的刀具有哪些----避免在加工时因无此刀具要修改程序,若一定要用到此刀具,则可以提前准备。
十、问:在编程中安全高度的设定有什么原则? 答:安全高度的设定原则:一般高过岛屿的最高面。或者将编程零点设在最高面,这样也可以最大限度避免撞刀的危险。 十一、问:刀具路径编出来之后,为什么还要进行后处理? 答:因为不同的机床所能认到的地址码和NC程序格式不同,所以要针对所使用的机床选择正确的后处理格式才能保证编出来的程序可以运行。
十二、问:什么是DNC通讯? (一)程序输送的方式可分为CNC和DNC两种,CNC是指程序通过媒体介质(如软盘,读带机,通讯线等)输送到机床的存储器存储起来,加工时从存储器里调出程序来进行加工。由于存储器的容量受大小的限制,所以当程序大的时候可采用DNC方式进行加工,由于DNC加工时机床直接从控制电脑读取程序(也即是边送边做),所以不受存储器的容量受大小的限制。
(二)切削用量有三大要素:切削深度,主轴转速和进给速度。切削用量的选择总体原则是:少切削,快进给(即切削深度小,进给速度快)。
(三)按材料分类,刀具一般分为普通硬质白钢刀(材料为高速钢),涂层刀具(如镀钛等),合金刀具(如钨钢,氮化硼刀具等)。
④ cnc加工中心主轴维修都有哪些方法
加工中心是从数控铣床发展而来的。与数控铣床的最大区别在于加工中心具有自动交换加工刀具的能力,通过在刀库上安装不同用途的刀具,可在一次装夹中通过自动换刀装置改变主轴上的加工刀具,实现多种加工功能。
机械主轴常见故障的维修处理措施:
1、主轴发热、旋转精度下降问题
故障发生的现象:加工出来的工件孔精度偏低,圆柱度很差,主轴发热很快,加工噪声很大。
故障原因分析:经过对机床主轴长期观察可以确定,机床主轴的定心锥孔在多次换刀过程中受到损伤,主要损伤原因是使用过程中换刀的拔、插到失误,损伤了主轴定心孔的锥面,维修机械主轴认准机械,专业品质保障,仔细分析后发现主轴部件的故障原因有四点:
(1)主轴轴承的润滑脂不合要求,混有粉尘杂质和水分,这些杂质主要来源于该加工中心用的没有经过精馏和干燥的压缩空气,在气动清屑时,粉尘和水气进入到主轴轴承的润滑脂内,导致主轴轴承润滑不好,产生大量热河噪声;
(2)主轴内用于定位刀具的锥形孔定位面上有损伤,导致主轴的锥面和刀柄的锥面不能完美配合,加工的孔出现微量偏心;
(3)主轴的前轴承预紧力下降,导致轴承的游隙变大;
(4)主轴内部的自动夹紧装置的弹簧疲劳失效,刀具不能完整拉紧,偏离了原本位置。
针对以上原因,故障处理措施:
(1)更换主轴的前端轴承,使用合格的润滑脂,并调整轴承游隙;
(2)将主轴内锥形孔定位面研磨合格,用涂色法检测保证与刀柄的接触面不低于90%;
(3)更换夹紧装置的弹簧,调整轴承的预紧力。
除此之外,在操作过程中要经常检查主轴的轴孔、刀柄的清洁和配合状况,要增加空气精滤和干燥装置,要合理安排加工工艺,不可使机器超负荷工作。
2、加工中心的主轴部件的拉杆钢球损坏问题
故障发生的现象:主轴内刀具自动夹紧机构的拉杆钢球经常损坏,刀具的刀柄尾部锥面也经常损坏。
故障原因分析:经研究发现,主轴松刀动作与机械手拔刀动作不协调,具体原因是限位开关安装在增压气缸的尾部,在气缸的活塞动作到位时,增压缸的活塞不能及时到位,导致在夹紧结构的机械手还未完全松开时就进行了暴力拔刀,严重损坏了拉杆钢球和拉紧螺钉。
故障处理措施:对油缸和气缸进行清洗,更换密封环,调整压强,使两者动作协调一致,同时定期对气液增压缸进行检查,及时消除安全隐患。
3、主轴部件的定位键损坏问题
故障发生的现象:换刀声音较大,主轴前端拨动刀柄旋转的定位键发生局部变形。
故障原因分析:经过研究发现,换刀过程中的巨大声响发生在机械手插刀阶段,原因是主轴准停位置有误差问题以及主轴换刀的参考点发生漂移问题。加工中心通常采用霍尔元件进行定向检测,霍尔元件的固定螺钉在长时间使用后出现了松动,导致机械手插刀时刀柄的键槽没有对准主轴上的定位键,故而会撞坏定位键;机械主轴维修认准,而主轴换刀的参考点发生漂移可能是CNC系统的电路板发生接触不良、电气参数变化、接近开关固定松动等,参考点漂移导致刀柄插入到主轴锥孔时,锥面直接撞击定心锥孔,产生异响。
故障处理措施:调整霍尔元件的安装位置,并加防松胶紧固,同时调整换刀参考点,更换主轴前端的定位键。除此之外,在加工中心使用过程中要定期检查主轴准停位置和主轴换刀参考点的位置变化,发生异常现象要及时检查。
机械主轴的保养:
降低轴承的工作温度,经常采用的办法是润滑油。润滑方式有,油气润滑方式、油液循环润滑两种。在使用这两种方式时要注意以下几点:
1、在采用油液循环润滑时,要保证主轴恒温油箱的油量足够充分。
2、油气润滑方式刚好和油液循环润滑相反,它只要填充轴承空间容量的百分之十时即可。
循环式润滑的优点是,在满足润滑的情况下,能够减少摩擦发热,而且能够把主轴组件的一部分热量给以吸收。
对于主轴的润滑同样有两种放式:油雾润滑方式和喷注润滑方式。主轴部件的冷却主要是以减少轴承发热,有效控制热源为主。
主轴部件的密封则不仅要防止灰尘、屑末和切削液进入主轴部件,还要防止润滑油的泄漏。主轴部件的密封有接触式和非接触式密封。对于采用油毡圈和耐油橡胶密封圈的接触式密封,要注意检查其老化和破损;对于非接触式密封,为了防止泄漏,重要的是保证回油能够尽快排掉,要保证回油孔的通畅。良好的润滑效果,可以降低轴承的工作温度和延长使用寿命;为此,在操作使用中要注意到:低速时,采用油脂、油液循环润滑;高速时采用油雾、油气润滑方式。但是,在采用油脂润滑时,主轴轴承的封入量通常为轴承空间容积的10%,切忌随意填满,因为油脂过多,会加剧主轴发热。对于油液循环润滑,在操作使用中要做到每天检查主轴润滑恒温油箱,看油量是否充足,如果油量不够,则应及时添加润滑油;同时要注意检查润滑油温度范围是否合适。
机械主轴的特点就是三高一低(即:高速度、高精度、高效率、低噪音)。
1、高速度:机械主轴CNC雕铣机选用精密及高速的配对轴承,弹性/刚性预紧结构,可以达到较高的转速,可以让刀具达到最佳的切削效果。
2、高速度:7:24锥孔针对安装甚而的径向跳动可以确保小于0.005mm。因为高精度的加上高精度的零件制造就可以确保了。
3、高效率:可以利用连续微高来改变速度,使得在加工过程中可以随时控制切削速度,这样就可以达到高加工效率。
4、低噪音:平衡测试表明:凡是达到了G1/G0.4(ISO1940-1等级的,主轴在高速运转时,具有噪音小的特点。
数控加工中心是由机械设备与数控系统组成的适用于加工复杂零件的高效率自动化机床。数控加工中心是目前世界上产量最高、应用最广泛的数控机床之一。它的综合加工能力较强,工件一次装夹后能完成较多的加工内容,加工精度较高,就中等加工难度的批量工件,其效率是普通设备的5~10倍,特别是它能完成许多普通设备不能完成的加工,对形状较复杂,精度要求高的单件加工或中小批量多品种生产更为适用。它把铣削、镗削、钻削、攻螺纹和切削螺纹等功能集中在一台设备上,使其具有多种工艺手段。加工中心按照主轴加工时的空间位置分类有:卧式和立式加工中心。按工艺用途分类有:镗铣加工中心,复合加工中心。按功能特殊分类有:单工作台、双工作台和多工作台加工中心。单轴、双轴、三轴及可换主轴箱的加工中心等。
⑤ 数控机床常见故障有哪些
1、主轴部件故障
由于使用调速电机,数控机床主轴箱结构比较简单,容易出现故障的部位是主轴内部的刀具自动夹紧机构、自动调速装置等。为保证在工作中或停电时刀夹不会白行松脱,刀具自动夹紧机构采用弹簧夹紧,并配行程开关发出夹紧或放松信号。若刀具夹紧后不能松开,则考虑调整松刀液压缸压力和行程开关装置或调整碟形弹簧上的螺母,减小弹簧压合量。此外,主轴发热和主轴箱噪声问题,也不容忽视,此时主要考虑清洗主轴箱,调整润滑油量,保证主轴箱清洁度和更换主轴轴承,修理或更换主轴箱齿轮等。
2、进给传动链故障
在数控机床进给传动系统中,普遍采用滚珠丝杠副、静压丝杠螺母副、滚动导轨、静压导轨和塑料导轨。所以进给传动链有故障,主要反映是运动质量下降。如:机械部件未运动到规定位置、运行中断、定位精度下降、反向间隙增大、爬行、轴承噪声变大(撞车后)等。对于此类故障可以通过以下措施预防:
(1)提高传动精度
调节各运动副预紧力,调整松动环节,消除传动间隙,缩短传动链和在传动链中设置减速齿轮,也可提高传动精度。
(2)高传动刚度
调节丝杠螺母副、支承部件的预紧力及合理选择丝杠本身尺寸,是提高传动刚度的有效措施。刚度不足还会导致工作台或拖板产生爬行和振动以及造成反向死区,影响传动准确性。
(3)提高运动精度
在满足部件强度和刚度的前提下,尽可能减小运动部件的质量,减小旋转零件的直径和质量,以减小运动部件的惯性,提高运动精度。
(4)导轨
滚动导轨对赃物比较敏感,必须要有良好的防护装置,而且滚动导轨的预紧力选择要恰当,过大会使牵引力显著增加。静压导轨应有一套过滤效果良好的供油系统。
3、自动换刀装置故障
自动换刀装置故障主要表现在:刀库运动故障、定位误差过大、机械手夹持刀柄不稳定、机械手运动误差较大等。故障严重时会造成换刀动作卡住,机床被迫停止工作。
(1)刀库运动故障
若连接电机轴与蜗杆轴的联轴器松动或机械联接过紧等机械原因,会造成刀库不能转动,此时必须紧固联轴器上的螺钉。若刀库转动不到位,则属于电机转动故障或传动误差造成。若现刀套不能夹紧刀具,则需调整刀套上的调节螺钉,压紧弹簧,顶紧卡紧销。当出现刀套上/下不到位时,应检查拨又位置或限位开关的安装与调整情况。
(2)换刀机械手故障
若刀具夹不紧、掉刀,则调整卡紧爪弹簧,使其压力增大,或更换机械手卡紧销。若刀具夹紧后松不开,应调整松锁弹簧后的螺母,使最大载荷不超过额定值。若刀具交换时掉刀,则属于换刀时主轴箱没有回到换刀点或换刀点漂移造成,应重新操作主轴箱,使其回到换刀位置,重新设定换刀点。
4、各轴运动位置行程开关压合故障
在数控机床上,为 保证自动化丁作的可靠性,采用了大量检测运动位置的行程开关。机床经过长期运行,运动部件的运动特性发生变化,行程开关压合装置的可靠性及行程开关本身品质特性的改变,对整机性能产生较大影响。一般要适时检查和更换行程开关,可消除因此类开关不良对机床的影响。
5、配套辅助装置故障
液压系统。液压泵应采用变量泵,以减少液压系统的发热。油箱内安装的过滤器,应定期用汽油或超声波振动清洗。常见故障主要是泵体磨损、裂纹和机械损伤,此时一般必须大修或更换零件。
气压系统。用于刀具或工件夹紧、安全防护门开关以及主轴锥孔吹屑的气压系统中,分水滤气器应定时放水,定期清洗,以保证气动元件中运动零件的灵敏性。阀心动作失灵、空气泄漏、气动元件损伤及动作失灵等故障均由润滑不良造成,故油雾器应定期清洗。此外,还应经常检查气动系统的密封性。
润滑系统。包括对机床导轨、传动齿轮、滚珠丝杠、主轴箱等的润滑。润滑泵内的过滤器需定期清洗、更换,一般每年应更换一次。
冷却系统。它对刀具和工件起冷却和冲屑作用。冷却液喷嘴应定期清洗。
排屑装置。排屑装置是具有独立功能的附件,主要保证自动切削加工顺利进行和减少数控机床的发热。因此排屑装置应能及时自动排屑,其安装位置一般应尽可能靠近刀具切削区域。
⑥ 加工中心主轴故障的解决方法有哪些
电主轴是在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术,它与直线电机技术、高速刀具技术一起,把高速加工推向一个新时代。电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置等。长期高负荷的使用会出现电主轴故障,下面简单介绍下电主轴常见故障的维修分析与排除方法:
一、主轴发热故障的原因和解决方法
(1)主轴轴承预紧力过大,造成主轴回转时摩擦过大,引起主轴温度急剧升高。
故障排除方法:可以通过重新调整主轴轴承预紧力加以排除。
(2)主轴轴承研伤或损坏,也会造成主轴回转时摩擦过大,引起主轴温度急剧升高。
故障排除方法:可以通过更换新轴承加以排除。
(3)主轴润滑油脏或有杂质,也会造成主轴回转时阻力过大,引起主轴温度升高。
故障排除方法:通过清洗主轴箱,重新换油加以排除。
(4)主轴轴承润滑油脂耗尽或润滑油脂过多,也会造成主轴回转时阻力、摩擦过大,引起主轴温度升高。
故障排除方法:通过重新涂抹润滑脂加以排除。
二、主轴在加工过程中急停
(1)主轴电动机与主轴连接的传动带过松,造成主轴传动转矩过小,强力切削时主轴转矩不足,产生报警,数控机床自动停机。
故障排除方法:通过重新调整主轴传动带的张紧力,加以排除。
(2)主轴电动机与主轴连接的传动带表面有油,造成主轴传动时传动带打滑,强力切削时主轴转矩不足,产生报警,数控机床自动停机。
故障排除方法:通过用汽油或酒精清洗后擦干净加以排除。
(3)主轴电动机与主轴连接的传动带使用过久而失效,造成主轴电动机转矩无法传动,强力切削时主轴转矩不足,产生报警,数控机床自动停机。
故障排除方法:通过更换新的主轴传动带加以排除。
(4)主轴传动机构中的离合器、联轴器连接、调整过松或磨损,造成主轴电动机转矩传动误差过大,强力切削时主轴振动强烈。产生报警,数控机床自动停机。
故障排除方法:通过调整、更换离合器或联轴器加以排除。
三、主轴工作时噪声过大
(1)主轴部件动平衡不良,使主轴回转时振动过大,引起工作噪声。
故障排除方法:需要机床生产厂家的专业人员对所有主轴部件重新进行动平衡检查与调试。
(2)主轴传动齿轮磨损,使齿轮啮合间隙过大,主轴回转时冲击振动过大,引起工作噪声。
故障排除方法:需要机床生产厂家的专业人员对主轴传动齿轮进行检查、维修或更换。
(3)主轴支承轴承拉毛或损坏,使主轴回转间隙过大,回转时冲击、振动过大,引起工作噪声。
故障排除方法:需要机床生产厂家的专业人员对轴承进行检查、维修或更换。
(4)主轴传动带松弛或磨损,使主轴回转时摩擦过大引起工作噪声。
故障排除方法:通过调整或更换传动带加以排除。
四、切削刀具无法夹紧
(1)碟形弹簧位移量太小,使主轴抓刀、夹紧装置无法到达正确位置,刀具无法夹紧。
故障排除方法:通过调整碟形弹簧行程长度加以排除。
(2)弹簧夹头损坏,使主轴夹紧装置无法夹紧刀具。
故障排除方法:通过更换新弹簧夹头加以排除。
(3)碟形弹簧失效,使主轴抓刀、夹紧装置无法运动到达正确位置,刀具无法夹紧。
故障排除方法:通过更换新碟形弹簧加以排除。
(4)刀柄上拉钉过长,顶撞到主轴抓刀、夹紧装置,使其无法运动到达正确位置,刀具无法夹紧。
故障排除方法:通过调整或更换拉钉,并正确安装加以排除。
五、刀具夹紧后不能松开
(1)松刀液压缸压力和行程不够。
故障排除方法:通过调整液压力和行程开关位置加以排除。
(2)碟形弹簧压合过紧,使主轴夹紧装置无法完全运动到达正确位置,刀具无法松开。
故障排除方法:通过调整碟形弹簧上的螺母,减小弹簧压合量加以排除。
以上就是数控中心主轴的常见故障和解决方法,出现故障后按照由外到内、由简到繁顺序依次排查可以快速的解决问题。
⑦ 立式加工中心常用部件日常如何维护
立式加工中心作为高度自动化的加工设备,在长时间使用或者误操作时,会出现这样或者那样的故障,所以我们要做好日常维护保养工作。
1、立式加工中心伺服电动机和主轴电动机部分
伺服电机和控制系统是机床的动力来源和精度控制的关键部位,重点检查噪音和温升。如果噪音或温升过大,应查明是轴承等机械问题还是与其相配的放大器的参数设置问题,并采取相应措施加以解决。伺服轴在运动中如出现异常声音,有可能是由于丝杠、联轴节、与伺服电动机不同心造成的机械噪音,可将立式加工中心电动机与联轴节脱开,单独运行电动机,如果电动机仍有噪音,那么适当调整速度环增益与位置环增益,使电动机无声,如果无噪音,判断是丝杠与联轴节同心度问题,重新校正同心度,再与电动机连接,问题一般可以消除。
2、立式加工中心测量反馈元件
测量反馈件包括编码器,光栅尺等,要经常检查检测各元件连接是否松动,是否被油液或灰尘污染,灰尘和细小的铁屑末有可能损毁这类元件。
3、立式加工中心电气控制部分
经常检查连接机床的外接三相电源电压是否正常;检查电器元件连接是否良好;借助CRT显示诊断画面检查各类开关是否有效;检查各继电器、接触器工作是否正常,触点是否良好;热继电器、电弧抑制器等保护元件是否有效;检查立式加工中心电气柜内部元器件是否温度过高。对于接触器触点接触不良,可将接触器拆开,用小锉刀把触点表面的高温氧化物挫掉,然后用脱脂棉和酒精将杂物擦出,重新组装,再用万用表对触点进行导通测试。
4、立式加工中心数控系统控制部分
控制系统包括数控单元,电源模块,I/O接口,伺服放大器,主轴放大器,操作面板,显示器等。维护中主要是检查各有关电压值是否在规定范围内;电气元件连接是否有松动;各功能模块的风扇运转是否正常,清除风扇及滤尘网上的灰尘等。